• 제목/요약/키워드: swabbing material

검색결과 3건 처리시간 0.022초

Introduction of a novel swabbing material of a wiper and establishment of an optimal method for the collection of organic explosive residues

  • Sung, Tae-myung;Lee, Jong Hyup;Cho, Ju-ik
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.319-328
    • /
    • 2017
  • The identification of explosive residues on specimens obtained from an explosion event is a crucial factor for assessing the cause of the explosion. In order to detect the components of explosives, the explosive residues deposited on surfaces are commonly extracted using swabbing materials pre-wetted with an organic solvent. The residues are then analyzed with analytical instruments such as LC/MS and CE/MS. Most conventionally used swabbing media such as cotton swabs or cotton tip swabs seem unsuitable for extracting explosive residues from the surface of a large area of clothes because the swabbing materials tend to be damaged easily, and because only a relatively small amount of explosives is collected. To overcome these problems, we have introduced a novel wiper ($215{\times}210mm$, single layer, Yuhan-Kimberly, Republic of Korea) as a swabbing material to recover representative organic explosives, namely, TNT, RDX, tetryl, HMX, PETN, and NG, from a large area of clothes. Different sides of the wiper, which was folded in half five times, was used to swab the surface of a clothing. We compared this novel wiper with a cotton swab and a cotton tip swab in terms of the recovery efficiency for the aforementioned organic explosives by pre-wetting with methanol, acetone, and acetonitrile, respectively. We identified that this novel wiper collected a significantly higher amount of organic explosive residues than a cotton swab or a cotton tip swab when using methanol as an extracting solvent.

유리 금형용 다공질 소결재의 제조에 관한 연구 (A Study on the Fabrication of Porous Sintered Materials for Glass Mold)

  • 장태석;임태환
    • 한국산학기술학회논문지
    • /
    • 제6권6호
    • /
    • pp.468-472
    • /
    • 2005
  • 유리병의 제조에 있어서 유리 융체가 금형 벽면에 부착하는 것을 방지하기 위하여 성형할 때마다 금형 내벽면을 윤활제로 도포하는 공정이 있다. 금형 벽면을 통기성이 있는 다공질 소결체로 제조하면 도포공정을 생략할 수 있다. 따라서 본 연구에서는 스테인리스 중에서 내열${\cdot}$내마모 특성이 가장 우수한 310L계 조대 분말($-150{\mu}m$) 및 420J2 계 미세 분말($40{\~}50{\mu}m$)을 사용, 유리 금형용 내벽면 재로서 가장 적합한 다공질 소결체(소결체의 밀도: $85{\~}90\%$)를 제작하기 위하여 성형압력, 소결 분위기, 소결온도 및 시간을 변화시켜 다음과 같은 결과를 얻었다. (1) 고상 소결로서는 입자 크기가 큰 310L분말을 가지고는 어느 경우에 있어서나, 목적하는 소결 밀도를 얻을 수 없었다. (2) $2ton/cm^2$의 성형압력으로 성형한 실형상 성형체를 양산용 진공($1300^{\circ}C$, 2시간) 소결로에서 소결한 결과, 소결체의 밀도는 $310L+0.03\%B$, 420J2, 420J2+(0.03, 0.06)$\%$B에서 각각 6.2(79$\%$), 6.6(86$\%$), 7.3(95$\%$), $7.6(99\%)g/cm^3$로 나타났다. 따라서, 420J2계 분말(저압성형) 및 310L+0.03$\%$B(고압성형)분말을 사용하여 진공 중 소결하면 목적하는 통기도를 가진 소결체를 제작할 수 있다는 것을 알았다.

  • PDF

Effect of Spinal Cord Removal before or after Splitting and Washing on CNST Decontamination of Beef Carcasses

  • Lim, D.G.;Kim, D.H.;Lee, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권11호
    • /
    • pp.1770-1776
    • /
    • 2007
  • Beef carcasses were examined to explore the effects of spinal cord removal and washing on central nervous system tissue (CNST) decontamination of the surface during the slaughtering process. A total of 15 carcasses were split by sawing centrally down the vertebral column and left sides of split carcasses were used for analysis. Samples were collected by swabbing the surface from 4 defined parts on the interior and 4 on the exterior of carcasses from the abattoir and analyzed using an ELISA-based test. The results showed that automatic and manual spray washing decreased CNST contamination, especially on the interior ventral parts of carcass surfaces (p<0.01), but did not decrease CNST on the interior dorsal parts. Increasing washing time to 60 s did not affect the reduction of CNST contamination. Samples following spinal cord removal prior to splitting showed lower calculated levels of "risk material" than the stated limit of detection (0.1%) of the ELISA kit on interior and exterior carcass parts (p<0.01). Therefore, spinal cord removal prior to splitting could be a very effective way to minimize CNST contamination of beef carcasses.