• 제목/요약/키워드: sustainable protein

검색결과 79건 처리시간 0.024초

Comparative Calorimetric Evaluation of Ammoniated Straw-Based Rations Supplemented with Low Levels of Untreated and Formaldehyde Treated Groundnut Cake and Fish Meal with Respect to Growing Buffalo Calves

  • Tiwari, C.M.;Jadhao, S.B.;Chandramoni, Chandramoni;Murarilal, Murarilal;Khan, M.Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제13권6호
    • /
    • pp.761-773
    • /
    • 2000
  • Eighteen growing male Murrah buffalo (Bubalus bubalis) calves were divided into three groups consisting of six animals each and fed three urea ammoniated wheat straw (UAS) -based rations supplemented with concentrate mixtures (roughage: concentrate ratio 58:42) containing deoiled ground nut cake, GNC (8%), formaldehyde treated GNC (8%) or fish meal (8%) to undertake comparative evaluation of these rations in terms of their $CH_4$ production and growth (285 d duration) potential. A digestibility trial (10 d duration) was followed by a comparative calorimetric study in respiration chamber. Dry matter (DM) intake (84.3 to $89.3g/kg\;W^{0.75}d^{-1}$) did not differ between treatments. The digestibility coefficient of DM, organic matter (OM), crude protein (CP), neutral and acid detergent fiber did not differ significantly in different diets. Urinary energy loss as a percent of gross energy (GE) was not affected by diets. Average values of $CH_4$ production were 84.3, 77.6 and 99.1 g/d and $CH_4$ energy losses as percent of gross energy were 5.7, 5.2 and 6.1 percent on .GNC, formaldehyde treated GNC and fishmeal, respectively, and did not differ significantly. When expressed per unit of digestible OM intake, $CH_4$ production (g) was lower (p<0.05) on formaldehyde treated GNC (30.6) than on untreated GNC (30.6) and fish meal (31.9). Total ME intake and heat production were similar and hence the energy balances on different diets were similar. Nutritive value of rations in terms of digestible CP and ME were similar. Average daily gain calculated on the basis of regression of fortnights on cumulative liveweight gain in calves fed on concentrate containing unprotected GNC, protected GNC and fish meal were 437.1, 483.9 and 481.6 g, respectively. This indicated that the intake of energy was sufficient to meet the requirement of calves growing at 400 g per d. However, CP intake was around 150% of the stipulated standard (Kearl, 1982). Feed conversion ratios on unprotected GNC, protected GNC and fish meal were 11.60, 11.10 and 10.4 respectively. It was concluded that because significantly (p<0.05) low $CH_4$ is produced on protected GNC (8%), it is very good and sustainable protein source in comparison to poor quality fish meal and untreated GNC to be used in concentrate mixture for supplementing UAS-based diets.

Dietary inclusion effect of yacon, ginger, and blueberry on growth, body composition, and disease resistance of juvenile black rockfish (Sebastes schlegeli) against Vibrio anguillarum

  • Lee, Ki Wook;Jeong, Hae Seung;Cho, Sung Hwoan
    • Fisheries and Aquatic Sciences
    • /
    • 제23권4호
    • /
    • pp.7.1-7.8
    • /
    • 2020
  • Background: To minimize the use of antibiotics and to obtain a more sustainable fish culture and aquaculture industry, development of alternative natural source of immunostimulant to replace antibiotic in aquafeed is highly needed. Objective: Dietary inclusion effect of yacon (YC), ginger (GG), and blueberry (BB) on growth, body composition, and disease resistance of black rockfish against Vibrio anguillarum was compared to ethoxyquin (EQ). Methods: Four hundred eighty juvenile (an initial weight of 4.2 g) fish were randomly distributed into 12 of 50 L flowthrough tanks (forty fish per tank). Four experimental diets were prepared; the control (Con) diet with 0.01% EQ inclusion, and YC, GG, and BB diets at 1% each additive inclusion. Each additive was included into the experimental diets at the expense of wheat flour. Each diet was assigned to triplicate tanks of fish and hand-fed to satiation twice daily for 8 weeks. At the end of 8-week feeding trial, 20 fish from each tank fish were artificially infected by intraperitoneal injection with 0.1 mL of culture suspension of pathogenic V. anguillarum containing 3.3 × 106 cfu/mL respectively. Fish were monitored for the following 8 days after V. anguillarum infection and dead fish were removed every 6 h for the first 4 days and 12 h for the rest of the study. Results: Weight gain, specific growth rate (SGR), and feed efficiency ratio (FER) of fish fed the YC diet was higher than those of fish fed all other diets. However, feed consumption, protein efficiency ratio, and protein retention was not affected by dietary additive. Moisture, crude protein, and crude lipid content of the whole body of fish were affected by dietary additive. Analysis of the Kaplan-Meier survival curves showed that survival of fish fed the YC, BB, and GG diets was higher than the Con diet. Conclusion: Oral administration of YC can improve not only weight gain, SGR, and FER of black rockfish, but lower mortality of rockfish at occurrence of V. anguillarum.

Integrated Tree Crops-ruminants Systems in South East Asia: Advances in Productivity Enhancement and Environmental Sustainability

  • Devendra, C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제24권5호
    • /
    • pp.587-602
    • /
    • 2011
  • Improved efficiency in the use of natural resources, pragmatic production systems and environmental sustainability, justified by the need for improved land use systems and increased productivity, are discussed in the context of Asian integrated systems, diversification, and issues of sustainability. The importance of these are reflected by serious inadequate animal protein production throughout Asia, where available supplies cannot match current and projected human requirements up to 2050. Among the ruminant production systems, integrated tree crops-ruminant production systems are grossly underestimated and merit emphasis and expansion. As an example, integrated oil palm- based system is an important pathway for integration with ruminants (buffaloes, cattle, goats and sheep), and provides the entry point for development. The importance and benefits of integrated systems are discussed, involving animals with annual and perennial tree crops, integration with aquaculture, the significance of crop-animal interactions, stratification of the systems, production options, improved use of forages and legumes, potential for enhanced productivity, implications for improved livelihoods of the rural poor and the stability of farm households. The advances in research and development in South East Asia highlight demonstrable increased productivity from animals and meat offtakes, value addition to the oil palm crop, sustainable development, and distinct economic impacts. The results from 12 out of a total of 24 case studies concerning oil palm over the past three decades showed increased yield of 0.49-3.52 mt of fresh fruit bunches (FFB)/ha/yr; increased income by about 30%; savings in weeding costs by 47- 60% equivalent to 21-62 RM/ha/yr; and an internal rate of return of 19% based on actual field data. The results provide important socio-economic benefits for resource-poor small farmers. Potential increased offtakes and additional income exist with the integration of goats. Additionally, the potential for carbon sequestration with tree crops is an advantage. The reasons for low adoption of the syatems are poor awareness of the potential of integrated systems, resistance by the crop- oriented plantation sector, and inadequate technology application. Promoting wider expansion and adoption of the systems in the future is linked directly with coherent policy, institutional commitment, increased investments, private sector involvement, and a stimulus package of incentives.

Morphological, Molecular, and Biochemical Characterization of Monounsaturated Fatty Acids-Rich Chlamydomonas sp. KIOST-1 Isolated from Korea

  • Jeon, Seon-Mi;Kim, Ji Hyung;Kim, Taeho;Park, Areumi;Ko, Ah-Ra;Ju, Se-Jong;Heo, Soo-Jin;Oh, Chulhong;Affan, Md. Abu;Shim, Won-Bo;Kang, Do-Hyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권5호
    • /
    • pp.723-731
    • /
    • 2015
  • Microalgae hold promise as producers of sustainable biomass for the production of biofuels and other biomaterials. However, the selection of strains with efficient and robust production of desirable resources remains challenging. In this study, we isolated a green microalga from Korea and analyzed its morphological, molecular, and biochemical characteristics. Microscopic and phylogenetic analyses demonstrated that the isolate could be classified into the genus Chlamydomonas, and we designated the isolate Chlamydomonas sp. KIOST -1. Compositions of protein, lipid, and carbohydrate in the microalgal cells were estimated to be 58.8 ± 0.2%, 22.7 ± 1.2%, and 18.5 ± 1.0%, respectively. Similar to other microalgae belonging to Chlorophyceae, the dominant amino acid and monosaccharide in Chlamydomonas sp. KIOST-1 were glutamic acid and glucose. On the other hand, the proportions of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids clearly differed from other species in the genus Chlamydomonas, and monounsaturated fatty acids accounted for a large portion (41.3%) of the total fatty acids in the isolate. Based on these results, Chlamydomonas sp. KIOST-1 has advantageous characteristics for biomass production.

Current situation and future prospects for global beef production: overview of special issue

  • Smith, Stephen B.;Gotoh, Takafumi;Greenwood, Paul L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제31권7호
    • /
    • pp.927-932
    • /
    • 2018
  • The demand for beef as a protein source is increasing worldwide, although in most countries beef accounts for considerably less than half of total meat consumption. Beef also provides a highly desirable eating experience in developed countries and, increasingly, in developing countries. The sustainability of beef production has different meanings in the various geographical and socio-economic regions of the world. Natural resources including land mass and uses, rainfall and access to livestock feed, and the robustness of the economy are major determinants of the perception of beef sustainability. In this overview of the 2016 International Symposium on "Future Beef in Asia" and this subsequent Special Edition of the Asian-Australasian Journal of Animal Sciences on "Current Situation and Future Prospects for Global Beef Production", the contributions have been grouped into the following categories: Countries in Southeast Asia; Europe; and Countries producing highly marbled beef for export and/or domestic consumption. They also include reference to Special Topics including marbled beef production, and use of "omics" technologies to enhance beef quality assurance. Among these broad categories, notable differences exist across countries in the production and marketing of beef. These reflect differences in factors including natural resource availability and climate, population size, traditional culture and degree of economic development including industrial and technological developments. We trust that the International Symposium and this Special Edition on Current Situation and Future Prospects for Global Beef Production, the contents of which that are briefly summarized in this paper, will serve as a valuable resource for the livestock industries, researchers and students with an interest in enhancing the prospects for sustainable, efficient beef production that satisfies the growing size and complexity of consumer demands and markets for beef.

Characterization of MABIK Microalgae with Biotechnological Potentials

  • Jo, Seung-Woo;Kang, Nam Seon;Lee, Jung A;Kim, Eun Song;Kim, Kyeong Mi;Yoon, Moongeun;Hong, Ji Won;Yoon, Ho-Sung
    • 한국해양바이오학회지
    • /
    • 제12권1호
    • /
    • pp.40-49
    • /
    • 2020
  • This article emphasized the physiological characteristics of the selected marine microalgal strains obtained from the culture collection of the National Marine Biodiversity Institute of Korea (MABIK). Therefore, in this study, 13 different marine microalgal strains belonging to the phylum Chlorophyta were analyzed for the composition of fatty acids, elements, photosynthetic pigments, and monosaccharides, as well as the lipid and protein contents. The results presented that the primary fatty acids were palmitic (C16:0), palmitoleic (C16:1 n-7), stearic (C18:0), oleic (C18:1 n-9), linoleic (C18:2 n-6), and α-linolenic (ALA, C18:3 n-3) acid in the evaluated microalgae. The lipid contents of heterotrophically grown strains ranged from 15.1% to 20.4%. The calorific values of the strains were between 17.4 MJ kg-1 and 21.3 MJ kg-1. The major monosaccharides were galactose, glucose, and mannose, while the primary photosynthetic pigments were chlorophyll-a (Chla), chlorophyll-b (Chlb), and lutein, respectively. Based on the results, the microalgal strains showed high potentials in the use of microalgae-based technologies to produce biochemicals, food, and renewable fuels as they are rich in sustainable sources of high-value bio-compounds, such as antioxidants, carbohydrates, and fatty acids.

Effects of Rice-Winter Cover Crops Cropping Systems on the Rice Yield and Quality in No-tillage Paddy Field

  • Lee, Young-Han;Son, Daniel;Choe, Zhin-Ryong
    • 한국환경농학회지
    • /
    • 제28권1호
    • /
    • pp.53-58
    • /
    • 2009
  • The propose of this study was to find out optimum conditions for no-tillage rice-winter cover crops cropping system. A field research was conducted to evaluate productivity and quality of rice cultivars (Dongjinbyeo and Junambybyeo) in rice-winter cover cropping systems at Doo-ryangmyeon., Sacheon, Gyeongsangnam-do, Korea from January 2005 to October 2006. The experimental soil was Juggog series (fine silty, mesic family of Fluvaquentic Eutrndepts). The rice cultivars were experimented under some different high residue farming systems, i.e. no-tillage no treatment (NTNT), no-tillage amended with rice straw (NTRS), no-tillage amended with rye (NTR), no-tillage amended with Chinese milkvetch (NTCMV), tillage no treatment (TNT), and conventional cropping system (Control). The miss-planted rate was 8.8% in 2005 and range of 10.8% to 13.3% in 2006 at NTR, and the other treatments were carried out at miss-planted rate ranging from 1.2% to 5.0%. Tiller numbers of Junambyeo, and Dongjinbyeo in both of years were the highest in Control, and decreased nearly in NTCMV, NTR, NTRS, NTNT, and TNT in that order. The lowest grain yield was observed in TNT both cultivars due to the lower tiller numbers per area, and spikelet numbers per panicle. Also, no-tillage treatments were lower grain yield than control. On the other hand, 1,000-grain weight was lowest in control due to higher tiller numbers per area, and spikelet numbers per panicle. Ripened grain ratio was a similar aspect in all treatments. The palatability score of milled rice was lowest in control while protein content of milled rice was highest in control. The NTCMV was considered an effective sustainable farming practice for rice yield and quality.

Application of a Simulation Model for Dairy Cattle Production Systems Integrated with Forage Crop Production: the Effects of Whole Crop Rice Silage Utilization on Nutrient Balances and Profitability

  • Kikuhara, K.;Hirooka, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제22권2호
    • /
    • pp.216-224
    • /
    • 2009
  • In Japan, since rice consumption has been decreasing with the westernization of Japanese eating habits, surplus paddy fields have been increasing. If these surplus paddy fields can be utilized for forage rice production as feed for animal production and excretions (feces and urine) from animal production can be applied to the paddy fields as manure, then the problems of surplus paddy fields and excretions from animal production may be solved, and the environment kept sustainable. The objectives of the present study were to apply a bio-economic model to dairy and forage rice integration systems in Japan and to examine the merit of introducing whole crop rice silage (WCRS), as well as economic and environmental effects of various economic and management options in the systems. Five simulations were conducted using this model. The use of WCRS as a home-grown feed increased environmental loads and decreased economic benefit because of the higher amount of purchased feed, when compared to the use of typical crops such as maize, alfalfa and timothy silage (simulation 1). Higher economic benefits from higher forage rice yields and higher milk production of a dairy cow were obtained (simulations 2, 3). There were no economic and environmental incentives for utilizing crude protein (CP) rich WCRS, because an increase in the CP content in WCRS led to the use of more chemical fertilizers, resulting in high production costs and nitrogen outputs (simulation 4). When evaluated under the situation of a fixed herd size, increasing forage rice yields decreased the total benefit of the production, in spite of the fact that the amount of subsidies per unit of land increased (simulation 5). It was indicated that excess subsidy support may not promote yield of forage rice. It was, however, observed in most cases that dairy and forage rice integration systems could not be economically established without subsidies.

Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages

  • Ridwan, Roni;Rusmana, Iman;Widyastuti, Yantyati;Wiryawan, Komang G.;Prasetya, Bambang;Sakamoto, Mitsuo;Ohkuma, Moriya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권4호
    • /
    • pp.511-518
    • /
    • 2015
  • Calliandra calothyrsus preserved in silage is an alternative method for improving the crude protein content of feeds for sustainable ruminant production. The aim of this research was to evaluate the quality of silage which contained different levels of C. calothyrsus by examining the fermentation characteristics and microbial diversity. Silage was made in a completely randomized design consisting of five treatments with three replications i.e.: R0, Pennisetum purpureum 100%; R1, P. purpureum 75%+C. calothyrsus 25%;, R2, P. purpureum 50%+C. calothyrsus 50%; R3, P. purpureum 25%+C. calothyrsus 75%; and R4, C. calothyrsus 100%. All silages were prepared using plastic jar silos (600 g) and incubated at room temperature for 30 days. Silages were analyzed for fermentation characteristics and microbial diversity. Increased levels of C. calothyrsus in silage had a significant effect (p<0.01) on the fermentation characteristics. The microbial diversity index decreased and activity was inhibited with increasing levels of C. calothyrsus. The microbial community indicated that there was a population of Lactobacillus plantarum, L. casei, L. brevis, Lactococcus lactis, Chryseobacterium sp., and uncultured bacteria. The result confirmed that silage with a combination of grass and C. calothyrsus had good fermentation characteristics and microbial communities were dominated by L. plantarum.

Corn stover usage and farm profit for sustainable dairy farming in China

  • He, Yuan;Cone, John W.;Hendriks, Wouter H.;Dijkstra, Jan
    • Animal Bioscience
    • /
    • 제34권1호
    • /
    • pp.36-47
    • /
    • 2021
  • Objective: This study determined the optimal ratio of whole plant corn silage (WPCS) to corn stover (stems+leaves) silage (CSS) (WPCS:CSS) to reach the greatest profit of dairy farmers and evaluated its consequences with corn available for other purposes, enteric methane production and milk nitrogen efficiency (MNE) at varying milk production levels. Methods: An optimization model was developed. Chemical composition, rumen undegradable protein and metabolizable energy (ME) of WPCS and CSS from 4 cultivars were determined to provide data for the model. Results: At production levels of 0, 10, 20, and 30 kg milk/cow/d, the WPCS:CSS to maximize the profit of dairy farmers was 16:84, 22:78, 44:56, and 88:12, respectively, and the land area needed to grow corn plants was 4.5, 31.4, 33.4, and 30.3 ha, respectively. The amount of corn available (ton DM/ha/yr) for other purposes saved from this land area decreased with higher producing cows. However, compared with high producing cows (30 kg/d milk), more low producing cows (10 kg/d milk) and more land area to grow corn and soybeans was needed to produce the same total amount of milk. Extra land is available to grow corn for a higher milk production, leading to more corn available for other purposes. Increasing ME content of CSS decreased the land area needed, increased the profit of dairy farms and provided more corn available for other purposes. At the optimal WPCS:CSS, MNE and enteric methane production was greater, but methane production per kg milk was lower, for high producing cows. Conclusion: The WPCS:CSS to maximize the profit for dairy farms increases with decreased milk production levels. At a fixed total amount of milk being produced, high producing cows increase corn available for other purposes. At the optimal WPCS:CSS, methane emission intensity is smaller and MNE is greater for high producing cows.