• Title/Summary/Keyword: sustainable and disaster-resilient

Search Result 14, Processing Time 0.019 seconds

Smart composite repetitive-control design for nonlinear perturbation

  • ZY Chen;Ruei-Yuan Wang;Yahui Meng;Timothy Chen
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.473-485
    • /
    • 2024
  • This paper proposes a composite form of fuzzy adaptive control plan based on a robust observer. The fuzzy 2D control gains are regulated by the parameters in the LMIs. Then, control and learning performance indices with weight matrices are constructed as the cost functions, which allows the regulation of the trade-off between the two performance by setting appropriate weight matrices. The design of 2D control gains is equivalent to the LMIs-constrained multi-objective optimization problem under dual performance indices. By using this proposed smart tracking design via fuzzy nonlinear criterion, the data link can be further extended. To evaluate the performance of the controller, the proposed controller was compared with other control technologies. This ensures the execution of the control program used to track position and trajectory in the presence of great model uncertainty and external disturbances. The performance of monitoring and control is verified by quantitative analysis. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and control theory.

SDGs approach towards Building Resilience to Disaster and Climate Change (재해에 대한 리질리넌스 확보를 위한 지속가능개발목표의 이행)

  • Hong, Ilpyo;Park, Jihyeon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.77-77
    • /
    • 2016
  • 최근 기후변화로 인한 수문기상학적인 극한 사상들은 점점 대형화되고 있고, 그 발생빈도 또한 잦아지고 있다. 인구의 증가와 급격한 도시화, 자산 가치의 증가 등으로 물과 관련된 재해로 인한 피해는 점점 더 규모가 커지고 있다. 홍수와 가뭄, 허리케인, 쓰나미와 같이 물과 관련된 재해는 그 영향을 받는 사람들의 수로 본다면 지구상의 재해 중 90%를 차지하고 있을 만큼 그 규모가 크다 할 수 있으며, 전세계적으로 물관련 재해로 인한 재산상의 피해를 약 1,000억 달러 규모로 추산하고 있는데, 2030년에는 그 현재의 두 배가 될 것으로 예측하고 있다. 이와 같은 재해로 인한 피해는 개도국이나 최빈국뿐만 아니라 관련 인프라가 잘 구축되어 있는 선진국 또한 예외는 아니다. 2015년 9월 UN 세계지속가능 정상 회의에서 각국의 수반들 또한 17개의 "지속가능개발목표(Sustainable Development Goals; SDGs)"를 채택함으로서 post-2015 아젠다가 세계를 지속가능하고 균형 있게 바꾸어 나가기 위해서 취해야 하는 가장 시급하고 필요한 과감한 혁신적인 조치임을 인식하였다. 재해경감과 지속가능개발은 2005년 채택된 "효고프레임웍(Hyogo Framework for Action) 2005-2015"에서 도 중요하게 다루어 졌다. 2015년 3월 제3차 세계재해경감대회에서 채택된 "센다이 프레임웍(Sendai Framework for Disaster Risk Reduction) 2015-2030"은 Post-2015 개발의제의 첫 번째 합의 결의안이라 할 수 있으며, 인명피해의 실질적인 감소와 재해에 의한 영향으로 피해 보는 사람들의 수를 줄이고, 경제적 손실과 대형 인프라 피해의 경감을 주요 타겟으로 하고 있다. 이와 같은 리질리언스의 중요성은 SDGs의 Goal 11인 "안전하고 지속가능한 도시와 정주지 조성(Make cities and human settlements inclusive, safe, resilient and sustainable)"에서 강조되고 있을 뿐만 아니라 다양한 골에서 재해로 부터의 리질리언스 확보에 대한 필요성을 강조하고 있다. 재해 위험을 경감시키기 위해서 국제적으로, 지역적으로 또는 국경을 넘어서는 협력 관계의 구축이 중앙정부나 지방정부를 비롯한 국가적으로 절대적으로 필요한 노력이라 할 수 있다. 특히나, Post-2015 개발 아젠다에 대한 기후변화와 재해경감을 위한 금융지원을 포함한 최빈국, 개도국, 군소 도서국가들과 중견국 선진국들의 양자간이나 다자간 협력 채널을 통한 역량 강화가 필요하다.

  • PDF

Intelligent optimal grey evolutionary algorithm for structural control and analysis

  • Z.Y. Chen;Yahui Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.5
    • /
    • pp.365-374
    • /
    • 2024
  • This paper adopts a new approach in which nonlinear vibrations can be controlled using fuzzy controllers by optimal grey evolutionary algorithm. If the fuzzy controller cannot stabilize the systems, then the high frequency is injected into the system to assist the controller, and the system is asymptotically stabilized by adjusting the parameters. This paper uses the GM (grey model) and the neural network prediction model. The structure of the neural network is improved from a single factor, and multiple data inputs are extended to various factors and numerous data inputs. The improved model expands the applicable range of uncontrolled elements and improves the accuracy of controlled prediction, using the model that has been trained and stabilized by multiple learning. The simulation results show that the improved gray neural network model has higher prediction accuracy and reliability than the traditional GM model, improving controlled management and pre-control ability. In the combined prediction, the time series parameters and the predicted values obtained from the GM (1,1) (Grey Model of first order and one variable) are simultaneously used as the input terms of the neural network, considering the influence of the non-equal spacing of the data, which makes the results of the combined gray neural network model more rationalized. By adjusting the model structure and system parameters to simulate and analyze the controlled elements, the corresponding risk change trend graphs and prediction numerical calculation results are obtained, which also realize the effective prediction of controlled elements. According to the controlled warning principle and objective, the fuzzy evaluation method establishes the corresponding early warning response method. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage.

Nonlinear intelligent control systems subjected to earthquakes by fuzzy tracking theory

  • Z.Y. Chen;Y.M. Meng;Ruei-Yuan Wang;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.33 no.4
    • /
    • pp.291-300
    • /
    • 2024
  • Uncertainty of the model, system delay and drive dynamics can be considered as normal uncertainties, and the main source of uncertainty in the seismic control system is related to the nature of the simulated seismic error. In this case, optimizing the management strategy for one particular seismic record will not yield the best results for another. In this article, we propose a framework for online management of active structural management systems with seismic uncertainty. For this purpose, the concept of reinforcement learning is used for online optimization of active crowd management software. The controller consists of a differential controller, an unplanned gain ratio, the gain of which is enhanced using an online reinforcement learning algorithm. In addition, the proposed controller includes a dynamic status forecaster to solve the delay problem. To evaluate the performance of the proposed controllers, thousands of ground motion data sets were processed and grouped according to their spectrum using fuzzy clustering techniques with spatial hazard estimation. Finally, the controller is implemented in a laboratory scale configuration and its operation is simulated on a vibration table using cluster location and some actual seismic data. The test results show that the proposed controller effectively withstands strong seismic interference with delay. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results is believed to achieved in the near future by the ongoing development of AI and control theory.