• 제목/요약/키워드: suspension volume

검색결과 125건 처리시간 0.026초

Effect of Particle Size on the Solubility and Dispersibility of Endosperm, Bran, and Husk Powders of Rice

  • Lee, Jeong-Eun;Jun, Ji-Yeon;Kang, Wie-Soo;Lim, Jung-Dae;Kim, Dong-Eun;Lee, Kang-Yeol;Ko, Sang-Hoon
    • Food Science and Biotechnology
    • /
    • 제17권4호
    • /
    • pp.833-838
    • /
    • 2008
  • Size effects of rice product powders on physical properties including suspension stability were investigated in this study. Endosperm, bran, and husk powders of rice with different size particles were prepared using the pin crusher or the ultrafine air mill. The physical properties of the powders were examined using particle size analysis, scanning electron microscopy, and spectrophotometry. The peak of the volume-weighted particle distribution of ultrafine endosperm particles was at $5.4\;{\mu}m$ whereas those of the bran and the husk appeared at 65 and $35\;{\mu}m$, respectively. Ultrafine particles of the endosperm and the husks dispersed better than larger-sized particles. As time elapsed, the dispersibility decreased, but the ultrafine particles were precipitated at the slowest rate. Our results suggest that ultrafine particles, including future nanosized particles, provide improved solubility and dispersibility resulting in better stability in the food colloidal suspension.

Production of Biomass and Bioactive Compounds from Cell Suspension Cultures of Eurycoma longifolia in Balloon Type Bubble Bioreactors

  • Shim, Kyu-Man;Murthy, Hosakatte Niranjana;Park, So-Young;Rusli, Ibrahim;Paek, Kee-Yoeup
    • 원예과학기술지
    • /
    • 제33권2호
    • /
    • pp.251-258
    • /
    • 2015
  • Eurycoma longifolia is an important rare medicinal plant that contains valuable bioactive compounds. In the present study, cell suspension culture of E. longifolia was established for the production of biomass and phenolic compounds. Various medium parameters, such as concentration of auxin, salt strength of the medium, and sucrose and nitrogen concentrations, were optimized for the production of biomass at the flask-scale level. Full strength Murashige and Skoog (MS) medium supplemented with $3.0mg{\cdot}L^{-1}$ naphthaleneacetic acid (NAA), 3% (w/v) sucrose, 0:60 $NH{_4}^+:NO{_3}^-$ was found suitable for biomass accumulation. Based on the optimized flask-scale parameters, cell suspension cultures were established in balloon-type bubble bioreactors, and bioprocess parameters such as inoculum density and aeration rate were optimized. Inoculum density of $50g{\cdot}L^{-1}$ and increasing aeration rate from 0.05 to 0.3 vvm, with increases every 7 days, were suitable for the accumulation of both biomass and phenolic compounds. With the optimized conditions, $14.70g{\cdot}L^{-1}$ dry biomass, $10.33mg{\cdot}g^{-1}$ DW of phenolics and $3.89mg{\cdot}g^{-1}$ DW of flavonoids could be achieved. Phenolics isolated from the cell biomass showed optimal free radical scavenging activity.

열소자 온열요법시 VX-2 hepatoma내의 온도 변화에 대한 연구 (Temperature distribution in VX-2 hepatoma heated with thermoseed hyperthermia)

  • 최일봉;박용휘
    • Radiation Oncology Journal
    • /
    • 제12권3호
    • /
    • pp.295-300
    • /
    • 1994
  • It was the purpose of present study to develop a new thermoseed for heating deep-seated tumors and assessment of the effect of magnetic control on thermoseeds. Aqueous suspension of iron micro spheres (Ferropolysaccharide) was injected directly into the VX-2 hepatoma and heated with 1.2 MHz inductive radiofrequency unit. Aqueous thermoseed suspension was delivered to the tumor by simple percutaneous injection. The limitation of the thermoseed heating method is the positional change of thermoseed particles in the tumor after implantation. The thermoseed particles could enter the systemic blood circulation and cause a severe embolization of a critical organ. To minimize this limitation, we have used the magnetic control after loading the thermoseed in the tumor, W hen ferropolysaccharides were exposed to a strong magnetic field, they magnetized and subsequently exerted a magnetic force on each other, forming larger aggregates of particles. The size of aggregated Particles were too big to enter the systemic blood circulation. Thus, unlike other thermoseed method, we hold the thermoseed particles stationary in the tumor. The temperature of the injected site and immediate vicinity elevated by $4-5^{\circ}C$. The temperature of the surrounding normal hepatic tissue elevated by $1-2^{circ}C$ only. The heating effect within the tumor was variable depending on the density of ferromagnetic aqueous suspension. Our results suggest that inductive heating of tumor injected with ferropolysaccharide solution offers the possibility of effective heat delivery to the defined tumor volume, which is difficult to heat with other heating devices.

  • PDF

고형물함량 및 혼합강도가 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 미치는 영향 (Effects of Solids Content and Mixing Speed in Treatment of Petroleum Hydrocarbon Contaminated Soils using a Bioreactor)

  • 김수철;남궁완;박대원
    • 한국토양환경학회지
    • /
    • 제2권3호
    • /
    • pp.23-30
    • /
    • 1997
  • 본 연구의 목적은 슬러리상 생물반응기를 이용한 석유계탄화수소 오염토양의 처리에 있어서 고형물함량 및 혼합강도의 영향을 평가하는 것이다. 디이젤오염토양의 슬러리상 생물학적 처리에 대한 수행결과는 실험실규모에서 얻어졌고 TPH(총 석유계탄화수소)는 생물학적 처리와 연관하여 평가되었다. TPH의 생물학적 및 비생물학적 거동은 디이젤내의 화합물에 의해 이전에 노출되지 않은 토양을 이용하여 결정되었다. 투입량에 대한 반응기부피는 고형물함량을 최대화함으로써 줄여질 수 있다. 고형물함량 50% 및 20%를 적용한 결과 생물학적 TPH 제거율에 있어서 약간의 차이(57.5%:61.6%)를 보여주었다. 혼합과 토양입자의 부유는 오염물의 탈착 및 생물학적 분해에 있어서 매우 중요하다. 이러한 관점에서 본 연구는 두가지 혼합강도를 이용하여 수행되었다. 70rpm을 이용한 반응기의 경우 20rpm을 적용한 반응기에 비하여 토양입자의 부유 및 TPH의 제거율에 있어서 더 좋은 결과를 나타내었다. 20rpm을 적용한 반응기의 경우 토양입자의 완전한 부유가 일어나지 않았다.

  • PDF

Electroporation을 이용한 잔디(Zoysia japonica Steud.) 및 벼(Oryza sativa L.) 배발생세포로의 DNA 도입 (DNA Delivery into Embryogenic Cells of Zoysiagrass(Zoysia japonica Steud.) and Rice(Oryza sativa L.) by Electroporation)

  • 박건환;최준수;윤충호;안병준
    • 식물조직배양학회지
    • /
    • 제21권5호
    • /
    • pp.309-314
    • /
    • 1994
  • 간편하면서도 효율적인 단자엽 식물의 형질전환 기법을 개발하기 위하여 배발생 세포를 직접 electroporation하여 DNA를 도입하는 실험을 벼와 잔디에서 실시하였다. 잔디는 수정 후 3주된 미숙배에서 캘러스를 유도하였으며, 2.4-D가 1 mg/L 함유된 액체 MS배지로 옮겨 진탕배양한 것을 electroporation 실험에 이용하였다. 벼는 20 mm 정도의 미숙화서 유래의 캘러스를 액체 N$_{6}$배지(1 mg/L 2.4-D 함유)에서 진탕배양하여 획득한 세포주를 사용하였다. 액체 진탕배양한 세포괴를 GUS expression vector인 pGA1074 (30 $\mu\textrm{g}$/ml)와 함께 MS 액체 배지에서 Electroporation하였다. 세포벽과 세포막을 통한 세포로의 DNA 전이는 GUS 유전자의 발현 여부 및 정도에 따라 결정하였다. 400 volt, 800 $\mu$F capacitance로 electroporation 처리된 벼와 잔디의 세포괴들은 200 ${\mu}\ell$ (packed cell volume)의 세포괴 당 25 unit (1 unit=파란색을 띤 독립된 세포군) 이상의 빈도로 GUS 활성을 나타내었다. 반면에 무처리 세포주 및 처리한 비배발생 세포주에서는 GUS 발현이 일어나지 않음을 반복적으로 확인차였다. 따라서 electroporation에 의한 벼와 잔디의 형질전환실험에서 원형질체 대신 intact한 배발생 세포가 이용될 수 있음을 의미한다

  • PDF

Pt/MOF-5 Hybrid Composite Encapsulated with Microporous Carbon Black to Improve Hydrogen Storage Capacity and Hydrostability

  • 여신영;곽승엽
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.45.2-45.2
    • /
    • 2011
  • Metal organic frameworks (MOF) have generated considerable interests as a potential candidate for hydrogen storage owing to their extremely high surface-to-volume ratio and low density. In this study, Pt nanoparticles of about 3 nm in size were introduced outside MOF-5 [$Zn_4O$(1,4-benzenedicarbocylate)3], which was then encapsulated with hydrophobic microporous carbon black (denoted CB@Pt/MOF-5) in order to enhance hydrogen uptake capacity without decreasing the specific surface area and hydrostability. To study the chemical composition, morphology, crystal information, and properties of the synthesized material, a variety of techniques is employed, including WXRD, XPS, ICP-AES, FE-SEM, HR-TEM, and N2 adsorption-desorption, confirming the formation of novel hybrid composite designated CB@Pt/MOF-5 with highly crystalline structure, large specific surface area and pore volume. In addition, $H_2$ storage capacity for resulting material was measured using magnetic suspension microbalance at 77 and 298 K under high-pressure condition, and the hydrostability was also tested by exposing the sample to 33% relative humidity at $23^{\circ}C$ and measuring XRD as a function of time.

  • PDF

Fundamental study on volume reduction of heavy metal-contaminated soil by magnetic separation

  • Konishi, Yusuke;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제22권2호
    • /
    • pp.1-6
    • /
    • 2020
  • Large-scale civil engineering works discharge a large amount of soil suspension contaminated with natural heavy metals. Most of the heavy metal ions due to industrial activities and minings are accumulated in the soils and the sediments of lakes and inner bays through the rivers. It is necessary to remove heavy metals from the soils and the sediments, because some of these heavy metals, such as arsenic and cadmium, have significant biological effects even in small amounts. This study proposes a new volume reduction method of the contaminated soils and sediments by superconducting magnetic separation. Our process can remove the specific minute minerals selectively, which adsorbs heavy metals depending on pH. As a fundamental study, the adsorption behaviors of arsenic and cadmium on minute minerals as a function of pH were investigated, and the adsorption mechanism was discussed based on the crystal structure and pH dependence of surface potential in each minute minerals.

다공성 4-비닐피리딘디비닐벤젠 수지의 합성과 그의 성질 (Synthesis of Porous 4-Vinylpyridine Divinylbenzene Resin and It's Properties)

  • 김동원;송해영;서정목;오제직;이범규
    • 대한화학회지
    • /
    • 제29권3호
    • /
    • pp.283-286
    • /
    • 1985
  • 비다공성 및 다공성 4-비닐피리딘디비닐벤젠 이온교환수지를, 서스펜션 중합방법으로 합성하였다. 합성한 이들 수지들은 적외선 흡수스펙트럼을 통하여 확인하였다. 다공성수지의 세공용적과 세공스펙트럼들은 수은 Porosimeter를 사용하여 측정하였다. 다공성 4-비닐피리딘디비닐벤젠 이온교환수지, P-4VPDVB, 50-100 mesh의 세공용적과 세공크기에 미치는 diluent와 %DVB의 영향이 논의되었다. 그리고 이들 비다공성 및 다공성 4-비닐피리딘 디비닐벤젠 수지들의 이온교환용량은 5.0meq/g이었다.

  • PDF

탄소 나노튜브 나노유체의 열전도도에 대한 연구 (Study on the Thermal Conductivity of Carbon-Nanotube Nanofluids)

  • 김봉훈
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2006년도 하계학술발표대회 논문집
    • /
    • pp.168-175
    • /
    • 2006
  • An experimental study was conducted to investigate the effect of the morphology of CNT on the thermal conductivity of suspensions. The effective thermal conductivities of the samples were measured using asteady-state cut bar apparatus method. Enhancements based on the thermal conductivity of the base fluid are presented as functions of both the volume fraction and the temperature, Although functionalized SWNT produiced a more stable and homogeneous suspension, the addition of small amounts of surfactant to suspensions of 'as produced' SWNT demonstrated a greater increase in effective thermal conductivity than functionalized SWNT alone. The effective thermal conductivity enhancement corresponding to 1.0 percent by volume approached 10%, which was observed to be lower than expected, but more than twice the values, 3.5%, obtained for similar tests conducted using aluminum oxide suspensions. However, for suspensions of MWNT, the degree of enhancement was measured to be approximately 37%. It was postulated that the effect of clustering, resulting from the multiple heat-flow passages constituted by interconnecting neighboring CNT clusters, played an important role in significant enhancement of effective thermal conductivity.

  • PDF

Fractal Nature of Magnetic Colloidal Dispersion with Cobalt Iron Oxide and Metal Iron Particles

  • Yoon, Kwan Han;Lee, Young Sil
    • Korean Chemical Engineering Research
    • /
    • 제60권1호
    • /
    • pp.125-131
    • /
    • 2022
  • The microstructure of highly aggregated colloidal dispersions was investigated by probing the rheological behavior of magnetic suspensions. The dynamic moduli as functions of frequency and strain amplitude are shown to closely resemble that of colloidal gels indicating the formation of network structure. The two types of characteristic critical strain amplitudes, γc and γy, were characterized in terms of the changing microstructure. The amplitude of γc indicates the transition from linear to nonlinear viscoelasticity and depends only on particle volume fraction not magnetic interactions. The study of scaling behavior suggests that it is related to the breakage of interfloc, i.e., floc-floc structure. However, yielding strain, γy, was found to be independent of particle volume fraction as well as magnetic interaction. It relates to extensive deformation resulting in yielding behavior. The scaling of elastic constant, Ge, implies that this yielding behavior and hence γy is due to the breakage of long-range interfloc interactions. Also, the deformation of flocs due to increase strain was indicated from the investigation of the fractal nature.