We evaluated the geochemical characteristics and their potential pollution of Asian Dusts in Daejeon, Korea during spring 2007. Compared with the chemical compositions of soils in source area of Asian Dust, those of aerosols in Daejeon were enriched with trace elements (ten to hundred fold), inferring that pollutants from China have affected on local environment in adjoining country such as Korea. Chemical analysis of aerosols during Asian dust showed that fine particles ($PM_{2.5}$) contained high contents of trace elements such as Cr, Cu, Pb, Zn, V, S, As, Cd, Co, Ni, Mo, Sb, Cs, Rb, Th, Sc and Y. In the case of TSP (Total Suspended Particle), Zr, Sr, Ba, Li, Th and U were contained much more than other trace elements. The contents of some elements (i.e. Li, Cs, Co, U, Cr, Ni, Rb, V, Th, Y, Sr and Sc) in aerosols collected in Asian Dust period, which are not likely enriched by air pollutants, were higher (2 - 4.2 fold) than those in Non Asian Dust period, indicating that these elements could be used as indicator elements for determining the occurrence of Asian Dust phenomena (especially, Sr, V, Cr & Li). In the case of Asian Dust coming through the big cities and/or industrial areas of China, the domestic aerosols had higher contents of trace elements (such as S, Cd, Zn, Pb, Cu, Mo and As) than those from Northeastern China via North Korea, indicating that the transportation courses of air mass are very important to determine the pollution degrees. Using the enrichment factors of trace elements in aerosols during Asian Dust and Non Asian Dust, we identified that some elements (i.e. S, Zn, Cu, Pb, As, Mo and Cd) were most problematic in terms of environmental hazard aspects, and these elements could affect adverse effects on human health as well as ecosystem and surface environment (soil and water) through long-lived precipitation.