• 제목/요약/키워드: survival signaling

검색결과 357건 처리시간 0.034초

Proteolytic cleavages of MET: the divide-and-conquer strategy of a receptor tyrosine kinase

  • Fernandes, Marie;Duplaquet, Leslie;Tulasne, David
    • BMB Reports
    • /
    • 제52권4호
    • /
    • pp.239-249
    • /
    • 2019
  • Membrane-anchored full-length MET stimulated by its ligand HGF/SF induces various biological responses, including survival, growth, and invasion. This panel of responses, referred to invasive growth, is required for embryogenesis and tissue regeneration in adults. On the contrary, MET deregulation is associated with tumorigenesis in many kinds of cancer. In addition to its well-documented ligand-stimulated downstream signaling, the receptor can be cleaved by proteases such as secretases, caspases, and calpains. These cleavages are involved either in MET receptor inactivation or, more interestingly, in generating active fragments that can modify cell fate. For instance, MET fragments can promote cell death or invasion. Given a large number of proteases capable of cleaving MET, this receptor appears as a prototype of proteolytic-cleavage-regulated receptor tyrosine kinase. In this review, we describe and discuss the mechanisms and consequences, both physiological and pathological, of MET proteolytic cleavages.

UBE2S promotes the proliferation and survival of human lung adenocarcinoma cells

  • Liu, Zhi;Xu, Lijun
    • BMB Reports
    • /
    • 제51권12호
    • /
    • pp.642-647
    • /
    • 2018
  • Ubiquitin-conjugating enzyme E2S (UBE2S), a family of E2 protein in the ubiquitination process, is involved in development of various cancers. However, its role in lung adenocarcinoma, has not been well elucidated. In this report, we attempted to investigate expression and function of UBE2S in lung adenocarcinoma. Up-regulation of UBE2S at mRNA, and protein level, was observed in human cancer tissues and lung adenocarcinoma cells. Higher UBE2S expression correlated with poorer prognosis of lung adenocarcinoma patients. UBE2S expression was efficiently suppressed by lentivirus-mediated shRNA strategy in A549 cells, and UBE2S silencing led to reduced cell proliferation, colony formation, and enhanced apoptosis. Inverse results were observed, in UBE2S over-expressed H1299 cells. Microarray analysis indicated that a large number of genes were regulated by UBE2S, and p53 signaling pathway may be critical, to the role of UBE2S in cancer development. Together, UBE2S could be a potential target for lung adenocarcinoma.

Regulation of post-translational modification in breast cancer treatment

  • Heo, Kyung-Sun
    • BMB Reports
    • /
    • 제52권2호
    • /
    • pp.113-118
    • /
    • 2019
  • The small ubiquitin-related modification molecule (SUMO), one of the post-translational modification molecules, is involved in a variety of cellular functions where it regulates protein activity and stability, transcription, and cell cycling. Modulation of protein SUMOylation or deSUMOylation modification has been associated with regulation of carcinogenesis in breast cancer. In the dynamic processes of SUMOylation and deSUMOylation in a variety of cancers, SUMO proteases (SENPs), reverse SUMOylation by isopeptidase activity and SENPs are mostly elevated, and are related to poor patient prognosis. Although underlying mechanisms have been suggested for how SENPs participate in breast cancer tumorigenesis, such as through regulation of target protein transactivation, cancer cell survival, cell cycle, or other post-translational modification-related machinery recruitment, the effect of SENP isoform-specific inhibitors on the progression of breast cancer have not been well evaluated. This review will introduce the functions of SENP1 and SENP2 and the underlying signaling pathways in breast cancer for use in discovery of new biomarkers for diagnosis or therapeutic targets for treatment.

예후가 좋지 않은 갑상선암에 대한 최신 치료 방침 (Recent Improvements in the Treatment of High-Risk Thyroid Cancer)

  • 이은경
    • 대한두경부종양학회지
    • /
    • 제38권1호
    • /
    • pp.1-9
    • /
    • 2022
  • Thyroid cancer is one of the slow-growing tumors with excellent oncological outcomes. However, a small set of patients with unexpectedly severe outcomes are usually ignored. Anaplastic thyroid cancer (ATC) remains one of the most aggressive and lethal solid tumors. Recently, dabrafenib and trametinib combination therapy or neoadjuvant BRAF induction therapy has shown promising results. In addition, a combination of targeted drugs, immunotherapy, surgery, and radiation therapy can improve overall survival in ATC patients. Another disease for which there is no breakthrough treatment is radioactive iodine-refractory differentiated thyroid cancer (DTC). To date, multikinase inhibitors (sorafenib, lenvatinib) targeting the growth factor signaling pathway have been developed and approved as anticancer agents for patients with advanced DTC. This review includes results from multikinase inhibitors to the emergence of new target molecules, including rearrangements during transformation (RET) and tropomyosin receptor kinase (TRK).

The role of diuretic hormones (DHs) and their receptors in Drosophila

  • Gahbien Lee;Heejin Jang;Yangkyun Oh
    • BMB Reports
    • /
    • 제56권4호
    • /
    • pp.209-215
    • /
    • 2023
  • Maintaining internal homeostasis and regulating innate behaviors are essential for animal survival. In various animal species, a highly conserved neuroendocrine system integrates sensory inputs and regulates physiological responses to environmental and internal changes. Diuretic hormones 44 and 31, which are homologs of mammalian corticotropin-releasing factor (CRF) and calcitonin gene-related peptide (CGRP), respectively, control body fluid secretion in Drosophila. These neuropeptides and their receptors have multiple physiological roles, including the regulation of body-fluid secretion, sleep:wake cycle, internal nutrient-sensing, and CO2-dependent response. This review discusses the physiological and behavioral roles of DH44 and DH31 signaling pathways, consisting of neuroendocrine cells that secrete DH44 or DH31 peptides and their receptor-expressing organs. Further research is needed to understand the regulatory mechanisms of the behavioral processes mediated by these neuroendocrine systems.

New strategies for germ cell cryopreservation: Cryoinjury modulation

  • Sang-Eun Jung;Buom-Yong Ryu
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제50권4호
    • /
    • pp.213-222
    • /
    • 2023
  • Cryopreservation is an option for the preservation of pre- or post-pubertal female or male fertility. This technique not only is beneficial for human clinical applications, but also plays a crucial role in the breeding of livestock and endangered species. Unfortunately, frozen germ cells, including oocytes, sperm, embryos, and spermatogonial stem cells, are subject to cryoinjury. As a result, various cryoprotective agents and freezing techniques have been developed to mitigate this damage. Despite extensive research aimed at reducing apoptotic cell death during freezing, a low survival rate and impaired cell function are still observed after freeze-thawing. In recent decades, several cell death pathways other than apoptosis have been identified. However, the relationship between these pathways and cryoinjury is not yet fully understood, although necroptosis and autophagy appear to be linked to cryoinjury. Therefore, gaining a deeper understanding of the molecular mechanisms of cryoinjury could aid in the development of new strategies to enhance the effectiveness of the freezing of reproductive tissues. In this review, we focus on the pathways through which cryoinjury leads to cell death and propose novel approaches to enhance freezing efficacy based on signaling molecules.

A1E Induces Apoptosis via Targeting HPV E6/E7 Oncogenes and Intrinsic Pathways in Cervical Cancer Cells

  • Ham, Sun Young;Bak, Ye Sol;Kwon, Tae Ho;Kang, Jeong Woo;Choi, Kang Duk;Han, Tae Young;Han, Il Young;Yang, Young;Jung, Seung Hyun;Yoon, Do Young
    • Journal of Applied Biological Chemistry
    • /
    • 제57권2호
    • /
    • pp.103-111
    • /
    • 2014
  • A1E is an extract from traditional Asian medicinal plants that has therapeutic activities against cancers, metabolic disease, and other intractable conditions. However, its mechanism of action on cervical cancer has not been studied. In order to ascertain if A1E would have pronounced anti-cervical cancer effect, cervical cancer cells were incubated with A1E and apoptosis was detected by nuclear morphological changes, annexin V-FITC/PI staining, cell cycle analysis, western blotting, Reverse-transcription polymerase chain reaction, and measurement of mitochondrial membrane potential. Expression of human papiloma virus E6 and E7 oncogenes was down-regulated in A1E-treated cervical cancer cells, while p53 and retinoblastoma protein levels were enhanced. A1E also perturbed cell cycle progression at sub-G1 and altered cell cycle regulatory factors in SiHa cervical cancer cells. A1E activated apoptotic intrinsic pathway markers such as caspase-9, caspase-3 and poly ADP-ribose polymerase, and down-regulated expression of Bcl-2 and Bcl-xl. A1E induced mitochondrial membrane potential collapse and cytochrome c release, and inhibited phosphatidylinositol 3-kinase (PI3K)/Akt, key factors involved in cell survival signaling. Taken all these results, A1E induced apoptosis via activation of the intrinsic pathway and inhibition of the PI3K/Akt survival-signaling pathway in SiHa cervical cancer cells. In conclusion, A1E exerts anti-proliferative action growth inhibition on cervical cancer cells through apoptosis which demonstrates its anti-cervical cancer properties.

Afatinib Reduces STAT6 Signaling of Host ARPE-19 Cells Infected with Toxoplasma gondii

  • Yang, Zhaoshou;Ahn, Hye-Jin;Park, Young-Hoon;Nam, Ho-Woo
    • Parasites, Hosts and Diseases
    • /
    • 제54권1호
    • /
    • pp.31-38
    • /
    • 2016
  • Specific gene expressions of host cells by spontaneous STAT6 phosphorylation are major strategy for the survival of intracellular Toxoplasma gondii against parasiticidal events through STAT1 phosphorylation by infection provoked $IFN-{\gamma}$. We determined the effects of small molecules of tyrosine kinase inhibitors (TKIs) on the growth of T. gondii and on the relationship with STAT1 and STAT6 phosphorylation in ARPE-19 cells. We counted the number of T. gondii RH tachyzoites per parasitophorous vacuolar membrane (PVM) after treatment with TKIs at 12-hr intervals for 72 hr. The change of STAT6 phosphorylation was assessed via western blot and immunofluorescence assay. Among the tested TKIs, Afatinib (pan ErbB/EGFR inhibitor, $5{\mu}M$) inhibited 98.0% of the growth of T. gondii, which was comparable to pyrimethamine ($5{\mu}M$) at 96.9% and followed by Erlotinib (ErbB1/EGFR inhibitor, $20{\mu}M$) at 33.8% and Sunitinib (PDGFR or c-Kit inhibitor, $10{\mu}M$) at 21.3%. In the early stage of the infection (2, 4, and 8 hr after T. gondii challenge), Afatinib inhibited the phosphorylation of STAT6 in western blot and immunofluorescence assay. Both JAK1 and JAK3, the upper hierarchical kinases of cytokine signaling, were strongly phosphorylated at 2 hr and then disappeared entirely after 4 hr. Some TKIs, especially the EGFR inhibitors, might play an important role in the inhibition of intracellular replication of T. gondii through the inhibition of the direct phosphorylation of STAT6 by T. gondii.

Ginsenoside Rg3의 항암효능 연구의 진보 (Recent Progress in Research on Anticancer Activities of Ginsenoside-Rg3)

  • 남기열;최재을;홍세철;표미경;박종대
    • 생약학회지
    • /
    • 제45권1호
    • /
    • pp.1-10
    • /
    • 2014
  • Ginsenoside Rg3 (G-Rg3) is one of protopanaxadiol ginsenosides characteristic of red ginseng, steamed and dried ginseng (Panax ginseng), which has recently attracted much attention for its antitumor properties in vitro and in vivo animal models. Experimental studies have demonstrated that it could promote cancer cell apoptosis, inhibit cancer cell growth, the apoptosis of cancer cells, adhesion, invasion and metastasis, and also prevent an angiogenetic formation in prostate, breast, ovarian, colorectal, gastric, liver and lung cancer etc. It has shown the antitumor activities by modulation of diverse signaling pathways, including regulation of cell proliferation mediators (CDKs and cyclins), growth factors (vascular endothelial growth factor), tumor suppressors (p53 and p21), cell death mediators (caspases, Bcl-2, Bax), inflammatory response molecules ($NF-{\kappa}B$ and COX-2), protein kinases (JNK, Akt, and AMP-activated protein kinase) and Wnt/${\beta}$-catenin signaling. In addition, the combination of Rg3 and chemotherapeutic agents have synergistically enhanced therapeutic efficacy and reduced antagonistically side effects. Furthermore, it can reverse the multidrug resistance of cancer cells, prolong the survival duration and improve life quality of cancer patients. Taken together, accumulating evidences could provide the potential of G-Rg3 in the treatment of cancers and the feasibility of further randomized placebo controlled clinical trials.

Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells

  • Huy, Tran Xuan Ngoc;Reyes, Alisha Wehdnesday Bernardo;Hop, Huynh Tan;Arayan, Lauren Togonon;Min, WonGi;Lee, Hu Jang;Rhee, Man Hee;Chang, Hong Hee;Kim, Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권3호
    • /
    • pp.616-623
    • /
    • 2017
  • Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus-infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus-containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.