• 제목/요약/키워드: survival enzyme

Search Result 195, Processing Time 0.029 seconds

A Comparative Study on Hydrolase Activities in Acanthamoeba culbeytconi and A. roureba (Acanthamoebaculbertsoni와 A. royreba의 가수분해 효소 활성도의 비교 연구)

  • 김용규;김태우
    • Parasites, Hosts and Diseases
    • /
    • v.26 no.2
    • /
    • pp.95-106
    • /
    • 1988
  • Specific or non-specific cytolytic processes of free-living amoebae causing meningoencephalitls have been emphasized and the cytolytic ability related to hydrolases in Entantoeba sp. and Naegleria sp. has also been reported since the latter half of 1970's. However, no information on hydrolase activities in Acanthamoeba sp. is available. Hydrolases in Acanthamoeba culbertsoni, a pathogenic species of free-living amoebae, were assayed and compared with those in a non-pathogenic species, A. royreba. Pathogenicity of these two species was confirmed through experimental infection to BALB/c mice. Hydrolase activities and cytotoxic effects between pathogenic and non.pathogenic species were compared in the trophozoites cultured in CGV media and in CHO cell line, respectively. The results are summarized as follows: 1. The mice infected with A. culbertseni were all dead 15 days after nasal inoculation, and the mean survival time was 8.5 days. Also the mice infected with this pathogenic species manifested typical meningoencephalitis, whereas the mice infected with A. royreba did not. 2. Hydrolases detected both in the cell extracts and culture media were acid phosphatase, ${\beta}-N-acetyl$ galactosaminidase, ${\beta}-N-acetyl$ glucosaminidase, ${\alpha}-mannosidase$, neutral proteinase and acid proteinase, all of which were detected with remarkably higher rate in A. culbertsoni than in A. royreba. 3. A. cuzbertsoni revealed strong cytotoxicity for the target CHO cells, whereas A. royreba did not show any specific cytotoxicity. About 80% of the target cells mixed with A. culbertsoni were dead 48 hours after cultivation, and more than 95% of the target cells were dead 72 hours after cultivation. 4. Hydrolase activities in A. culbertsoni cultured with the target cell line were assayed according to the culture time. The activities of acid phosphatase, ${\beta}-N-acetyl$ galactosaminidase, ${\beta}-N-acetyl$ glucosaminidase, ${\alpha}-mannosidase$ and acid proteinase in this pathogenic amoeba were detected higher in amoeba extracts than in culture media up to 120 hours after cultivation, but after 120 hours of cultivation those activities were detected higher in culture media than in the amoeba Iysates. Neutral proteinase activity in A. culbertsoni increased more in EBSS medium than in the Iysate specimens although the activity in the extracts was generally steady according to the cultivation time. Summarizing the above results, it is concluded that there were differences in hydrolase activities between Pathogenic A. culbertsoni and non-pathogenic A. royreba, and that some hydrolase activities were detected remarkably higher in A. culbertsoni which revealed strong cytotoxicity to the target CHO cell line.

  • PDF

Physiological Changes of Juvenile Abalone, Haliotis sieboldii Exposed to Acute Water-temperature Stress (급격한 수온 스트레스에 따른 시볼트전복, Haliotis sieboldii 치패의 생리적 변화)

  • Kim Tae-Hyung;Kim Kyung-Ju;Choe Mi-Kyung;Yeo In-Kyu
    • Journal of Aquaculture
    • /
    • v.19 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • This study was conducted to investigate changes of hemolymph count, antioxidant enzyme activities (catalase: CAT and superoxide dismutase: SOD) and Heat Shock Protein 70 (HSP70) mRNA in hemolymph, hepatopancreas and gill of abalone (Haliotis sieboldii) exposed to various water temperatures. Abalones were exposed to 10, 15, 20, 25 or $30^{\circ}C$ for 0, 6, 12, 24 or 48 hours. Survival rate of abalone was 100% at 10, 15, 20 and $25^{\circ}C$, but 0% at $30^{\circ}C$. Hemolymph counts increased at lower water temperatures (10 and $15^{\circ}C$) and decreased at $30^{\circ}C$. SOD activity decreased immediately after exposure to lower or higher water temperatures compared to the control ($20^{\circ}C$) with an exception at $30^{\circ}C$ where the activity increased. At lower temperatures, SOD activity rose high after 24 hours, but decreased again at 48 hours. At $25^{\circ}C$, it decreased compared to the control. CAT activity decreased immediately after exposure to 10 or $25^{\circ}C$ compared to the control, and then was recovered to the initial level after increment. At $15^{\circ}C$, CAT activity was high after 6 hours, and then was recovered to the initial level after increment. At $30^{\circ}C$, the activity decreased throughout the experiment. The HSP70 mRNA expression in gill increased at lower temperatures compared to the control ($20^{\circ}C$) and $25^{\circ}C$. In this study, rapid change of wale, temperature caused stress response in abalone which had been raised at $20^{\circ}C$. At molecular level, HSP70 was expressed rapidly, but antioxidant enzymes like SOD and CAT were expressed later than HSP70. At 15 and $25^{\circ}C$ of water temperatures, the HSP70, SOD and CAT expression were stable with time. However, at $30^{\circ}C$, all abalone died possibly because they could not develop resistance to high temperature.

Role of Citrate Synthase in Acetate Utilization and Protection from Stress-Induced Apoptosis

  • Lee, Yong-Joo;Kang, Hong-Yong;Maeng, Pil Jae
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2008.05a
    • /
    • pp.39-41
    • /
    • 2008
  • The yeast Saccharomyces cerevisiae has been shown to contain three isoforms of citrate synthase (CS). The mitochondrial CS, Cit1, catalyzes the first reaction of the TCA cycle, i.e., condensation of acetyl-CoA and oxaloacetate to form citrate [1]. The peroxisomal CS, Cit2, participates in the glyoxylate cycle [2]. The third CS is a minor mitochondrial isofunctional enzyme, Cit3, and related to glycerol metabolism. However, the level of its intracellular activity is low and insufficient for metabolic needs of cells [3]. It has been reported that ${\Delta}cit1$ strain is not able to grow with acetate as a sole carbon source on either rich or minimal medium and that it shows a lag in attaining parental growth rates on nonfermentable carbon sources [2, 4, 5]. Cells of ${\Delta}cit2$, on the other hand, have similar growth phenotype as wild-type on various carbon sources. Thus, the biochemical basis of carbon metabolism in the yeast cells with deletion of CIT1 or CIT2 gene has not been clearly addressed yet. In the present study, we focused our efforts on understanding the function of Cit2 in utilizing $C_2$ carbon sources and then found that ${\Delta}cit1$ cells can grow on minimal medium containing $C_2$ carbon sources, such as acetate. We also analyzed that the characteristics of mutant strains defective in each of the genes encoding the enzymes involved in TCA and glyoxylate cycles and membrane carriers for metabolite transport. Our results suggest that citrate produced by peroxisomal CS can be utilized via glyoxylate cycle, and moreover that the glyoxylate cycle by itself functions as a fully competent metabolic pathway for acetate utilization in S. cerevisiae. We also studied the relationship between Cit1 and apoptosis in S. cerevisiae [6]. In multicellular organisms, apoptosis is a highly regulated process of cell death that allows a cell to self-degrade in order for the body to eliminate potentially threatening or undesired cells, and thus is a crucial event for common defense mechanisms and in development [7]. The process of cellular suicide is also present in unicellular organisms such as yeast Saccharomyces cerevisiae [8]. When unicellular organisms are exposed to harsh conditions, apoptosis may serve as a defense mechanism for the preservation of cell populations through the sacrifice of some members of a population to promote the survival of others [9]. Apoptosis in S. cerevisiae shows some typical features of mammalian apoptosis such as flipping of phosphatidylserine, membrane blebbing, chromatin condensation and margination, and DNA cleavage [10]. Yeast cells with ${\Delta}cit1$ deletion showed a temperature-sensitive growth phenotype, and displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e., ROS accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation, when exposed to heat stress. Upon long-term cultivation, ${\Delta}cit1$ cells showed increased potentials for both aging-induced apoptosis and adaptive regrowth. Activation of the metacaspase Yca1 was detected during heat- or aging-induced apoptosis in ${\Delta}cit1$ cells, and accordingly, deletion of YCA1 suppressed the apoptotic phenotype caused by ${\Delta}cit1$ mutation. Cells with ${\Delta}cit1$ deletion showed higher tendency toward glutathione (GSH) depletion and subsequent ROS accumulation than the wild-type, which was rescued by exogenous GSH, glutamate, or glutathione disulfide (GSSG). Beside Cit1, other enzymes of TCA cycle and glutamate dehydrogenases (GDHs) were found to be involved in stress-induced apoptosis. Deletion of the genes encoding the TCA cycle enzymes and one of the three GDHs, Gdh3, caused increased sensitivity to heat stress. These results lead us to conclude that GSH deficiency in ${\Delta}cit1$ cells is caused by an insufficient supply of glutamate necessary for biosynthesis of GSH rather than the depletion of reducing power required for reduction of GSSG to GSH.

  • PDF

A Study on Bone Formation & Osteoporosis by Taeyoungion-Jahage Extracts

  • Kim, Yi-Geun;Seong, Jun-Ho;Kim, Dong-Il;Lee, Tae-Kyun;Kim, Jun-Ki;Park, Young-Duck
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.15 no.4
    • /
    • pp.45-60
    • /
    • 2002
  • Mouse calvarial osteoblast cells were isolated and cultured. To examine whether the cells produce active gelatinases in culture medium or not,the cells were analyzed using by zymograsphic analysis on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). We show that mouse calvarial osteoblasts in culture constitutively synthesize progelatinase- A. Then, mouse osteoblasts, which were stimulated by PTH, $1,25(OH)_2D_3$, mononuclear cell conditioned medium (MCM) and IL-1 as bone resorption agent's, showed increased collagenolysis by producing the active gelatinase. However, treatment of indomethacin and dexamethasone significantly decreased those effects of collagenolysis in mouse osteoblastic cells. On the other hand, IL-1 in stimulating bone resorption was examined using fetal mouse long bone organ culture. IL-1 stimulated bone resorption and produced marked resorption when present simultaneously. Furthermore, when it was examined the effects of indomethacin and dexamethasone on the dose dependent responses of $IL-1{\alpha}$, indomethacin and dexametasone produced a rightward shift in the IL-1 dose response curve. The results of in vitro cytotoxicities showed that Taeyoungjon-Jahage water extracts(T.Y.J-J.H.G extracts) have no any cytotoxicities in concentrations of $1-200\;{\mu}g/ml$ and furthermore there is no any cytotoxicity even in concentration of $300\;{\mu}g/ml$ on mouse calvarial bone cells. T.Y.J.-J.H.G. extracts had protective activity against PTH (2 units/mI), or MCM (5%, v/v), or $rhIL-1{\alpha}$ (1 ng/mI) or $1,25(OH)_2D3$ (10 ng/ml) , $IL-1{\alpha}$ and $IL-1{\beta}-induced$ collagenolysis in the mouse calvarial cells. Pretreatment of the T.Y.J.-J.H.G.extracts for 1 h, which by itself had little effect on cell survival, did not enhance the collagenolysis, nor significantly reduced the collagenolysis by pretreatment. Furthermore. the medicinal extracts were shown to have the protective effects against collagenolysis induced by $IL-1{\alpha}$ and $IL-1{\beta}$. Pretreatment of the extracts for 1 h significantly reduced the collagenolysis. Interestingly, the T.Y.J.-J.H.G. extracts were shown to have the inhibiting effects against gelatinase enzyme and processing activity induced by the bone resortion agents of PTH, $1,25(OH)_2D_3$, $IL-1{\beta}$ and $IL-1{\alpha}$, with strong protective effect in pretreatment with the extracts. T.Y.J.-J.H.G. extracts were shown to have the inhibiting effects against $IL-1{\alpha}-$ and $IL-1{\beta}-stimulated$ bone resorption and the effect of the pretreatment with a various concentrations of the medicinal extracts were significant. The inhibition extent and phenomena of IL-1 stimulated bone resorption by nonsteroidal anti-inflammatory agents of indomethacin and dexamethasone were similar to those obtained by T.Y.J.-J.H.G. extracts treatment in the mouse calvarial tissue culture system. These results indicated that the T.Y.J.-J.H.G.-water extracts are highly stable and applicable to clinical uses in osteoporosis.

  • PDF

Comparison of Feed Efficiency Between Rotifers Enriched Lipid-contents to Enrichment and Enhanced Digestive Enzymes Activity to Starch (영양강화 Rotifer와 효소활성 향상 Rotifer의 먹이효율 비교)

  • Kwon, O-Nam;Park, Heum-Gi
    • Journal of Aquaculture
    • /
    • v.22 no.1
    • /
    • pp.105-111
    • /
    • 2009
  • In this study, we carried out an experiment for estimation the larval digestibility in aspects which digestive enzymatic activities and nutrition of the rotifers, Brachionus rotundiformis. Thus we enhanced the digestive enzymatic activity through the addition of starch for the increase of digestibility of rotifer (starch-rotifer), and compared with the feed efficiency through rearing of the olive flounder, Paralichthys olivaceus used rotifer lipid-enriched with Algamac $2000^{(R)}$ (CE-rotifer). The digestive enzyme activities (except for TG-lipase), total protein contents, total essential amino acid, essential amino acids (methionin and phenylalanine) of starch-rotifer (the rotifer used a starch as additive, and enriched not) was assayed significantly higher than CE-rotifer (P<0.05). And total lipid, lipid classes (except for sterol) and fatty acids as DHA and EPA showed higher in CE-rotifer than starch-rotifer (P<0.05). But, sterol contents and ST/TG ratio were shown significantly higher in starch-rotifer (P<0.05). The flounder larvae supplied the two rotifers showed standard length and body weight that not significantly differed with ranges $3.72{\sim}3.79\;mm$ and $32.9{\sim}37.8\;mg$/larva on 6 days after hatching (DAH), respectively (P>0.05). However, these of 12 DAH showed the values of significantly higher to $5.94{\pm}0.249\;mm$, $144.0{\pm}23.86\;mg$/larva and $26.2{\pm}12.13%$ in standard length, body weight and survival in CE-flounder than that of starch-flounder (P<0.05). The hydrolytic enzymatic activities of flounder larvae severally supplied the two rotifers showed the significantly higher activities in acidic -amylase, neutral -amylase, TG-lipase, lysozyme and acidic phosphatase in starch-flounder on 5 DAH (P<0.05). But neutral $\alpha$-amylase, three proteases and two phosphatases of CE-flounder on 11 DAH showed the significantly higher activities than that of starch-flounder (P<0.05). Therefore, for the flounder, Paralichthys olivaceus larvae just depleted yolk was more beneficial to supply the feed, rotifer, enhanced the digestibility than to supply the feed lipid-enriched for aspect of larval digestibility up to 6 DAH, thereafter nutrition of absorption due to the development of digestive organs suggested that enrichment effect appeared with larval somatic growth. Consequently, investigation more detailed about the larval digestive physiological and nutritional requirement variations after 6 DAH will be necessary, thereafter.