• Title/Summary/Keyword: survey astronomy

Search Result 693, Processing Time 0.036 seconds

Korean Contribution to All-Sky Near-infrared Spectro-Photometric Survey

  • Jeong, Woong-Seob;Pyo, Jeonghyun;Park, Sung-Joon;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Lee, Duk-Hang;Ko, Kyeongyeon;Kim, Il-Joong;Kim, Minjin;Yang, Yujin;Ko, Jongwan;Song, Yong-Seon;Yu, Young Sam;Im, Myungshin;Lee, Hyung Mok;Lee, Jeong-Eun;Shim, Hyunjin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.37.3-37.3
    • /
    • 2016
  • The SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) is one of the candidates for the Astrophysical Small Explore mission of the NASA proposed together with KASI (PI Institute: Caltech). It will perform an all-sky near-infrared spectral survey to probe the origin of the Universe and water in the planetary systems and to explore the evolution of galaxies. The SPHEREx is designed to cover wide field of view of $3.5{\times}7deg$. as well as wide spectral range from 0.7 to $4.8{\mu}m$ by using four linear variable filters. The SPHEREx is under the Phase-A study to finalize the conceptual design and test plan of the instrument. The international partner, KASI will contribute to the SPHEREx in the hardware as well as the major science cases. The final selection will be made in the early 2017. Here, we report the current status of the SPHEREx mission.

  • PDF

SHORT-PERIOD VARIABILITY SURVEY (SPVS) IN BOAO (보현산천문대 단주기변광성 탐사(SPVS)연구)

  • Jeon, Young-Beom;Kim, Seung-Lee;Park, Yoon-Ho;Park, Byeong-Gon;LeeK, Chung-Uk;Lee, Eun-Jeong;Kim, Min-Su;Lee, Kyung-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.21-27
    • /
    • 2005
  • We have been performing a wide-field photometric monitoring program, named SPVS (Short-Period Variability Survey), at the Bohyunsan Optical Astronomy Observatory (BOAO). The observation system consists of a small refracting telescope (D = 155 mm, f = 1050 mm) and a $2k{\times}3k$ CCD Camera. The field of view is $1.0^{\circ}{\times}1.5^{\circ}$. Detection limit is about V = 13 for short-period small amplitude variables such as ${\delta}$ Scuti-type pulsating stars, and about V = 15 for long-period large amplitude variables such as eclipsing binaries and RR Lyrae stars. The instrument is designed to be remote-controlled through internet. The primary purpose of this project is to search for variable objects in bright Galactic open clusters. We present results of test observations conducted towards NGC 7092.

TRAO Outer Galaxy Surey in $^{13}CO$ I

  • Lee, Young-Ung;Kim, Young-Sik;Kang, Hyun-Woo;Jung, Jae-Hoon;Kim, Hyun-Goo;Lee, Chang-Hoon;Yim, In-Sung;Kim, Bong-Gyu;Kim, Kwang-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.65.2-65.2
    • /
    • 2010
  • We present a result of $^{13}CO$(1-0) survey toward the Outer Galactic Plane using the multi-beam receiver system recently installed on the 14 m telescope at Taeduk Radio Astronomy Observatory(TRAO). Our first target region is from $l=108^{\circ}$ to $113^{\circ}$ and $b=-1^{\circ}$ to $+1^{\circ}$, and some extended regions are included where emission is still arising. All data are on 50" grid. Velocity resolution is 0.63 km/sec, and the total velocity range is from -150 km/sec to 100 km/sec. A total of 40,000 spectra were obtained. The rms noise is about 0.2 K per channel for unsmoothed raw data. We will present a few initial results of the survey database.

  • PDF

ALMA/ACA CO (1-0) observations of group galaxies

  • Lee, Bumhyun;Wang, Jing;Chung, Aeree;Ho, Luis C.;Wang, Ran;Shao, Li;Michiyama, Tomonari;Wang, Shun;Peng, Eric W.;Kilborn, Virginia
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2020
  • Galaxy groups are the place where many galaxies feel the impact of the surroundings (e.g., merging, tidal interaction, ram pressure stripping) before joining bigger structures like (sub)clusters. A significant fraction of galaxies is quenched in the group environment. Such "pre-processing" of galaxies in groups is likely to affect galaxy evolution tremendously. To better understand how environmental processes in galaxy groups affect molecular gas, star formation activity, and galaxy evolution, we carried out CO imaging observations of group galaxies, using the Atacama Compact Array (ALMA/ACA). We selected all the targets that have been detected in the GEMS-HI survey for two groups, making the sample of 40 galaxies (18 galaxies in IC 1459 group and 22 galaxies in NGC 4636 group). Our ALMA/ACA observation is the first CO imaging survey for two groups. In this work, we present CO images of group galaxies, together with their star formation maps and HI images. Our ACA CO data show the asymmetric distribution of molecular gas in some of our samples. We discuss the impact of the group environment on molecular gas and star formation activity.

  • PDF

Infrared Spectro-Photomeric Survey Missions: NISS & SPHEREx

  • Jeong, Woong-Seob;Yang, Yujin;Park, Sung-Joon;Pyo, Jeonghyun;Kim, Minjin;Moon, Bongkon;Lee, Dae-Hee;Park, Won-Kee;Park, Young-Sik;Jo, Youngsoo;Kim, Il-Joong;Ko, Jongwan;Seo, Hyun Jong;Ko, Kyeongyeon;Kim, Seongjae;Hwang, Hoseong;Song, Yong-Seon;Lee, Jeong-Eun;Im, Myungshin;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.57.2-57.2
    • /
    • 2019
  • The NISS (Near-infrared Imaging Spectrometer for Star formation history) onboard NEXTSat-1 was successfully launched on last December and is now under the operation phase. The capability of both imaging and spectroscopy is a unique function of the NISS. It has realized the imaging spectroscopy (R~20) with a wide field of view of $2{\times}2deg$. in a wide near-infrared range from 0.95 to $2.5{\mu}m$. The major scientific mission is to study the cosmic star formation history in the local and distant universe. It also demonstrated the space technologies related to the infrared spectro-photometry in space. The NISS is performing the imaging spectroscopic survey for local star-forming galaxies, clusters of galaxies, star-forming regions, ecliptic deep fields and so on. As an extension of the NISS, the SPEHREx (Spectro-Photometer for the History of the Universe Epoch of Reionization, and Ices Explorer) was selected as the NASA MIDEX (Medium-class Explorer) mission (PI Institute: Caltech). As an international partner, KASI will participate in the development and the science for SPHEREx. It will perform the first all-sky infrared spectro-photometric survey to probe the origin of our Universe, to explore the origin and evolution of galaxies, and to explore whether planets around other stars could harbor life. Compared to the NISS, the SPHEREx is designed to have a much wider FoV of $3.5{\times}11.3deg$. as well as wider spectral range from 0.75 to $5.0{\mu}m$. Here, we introduce the status of the two space missions.

  • PDF

MASK: Multi-frequency AGN Survey with the KVN

  • Jung, Taehyun;Zhao, Guangyao;Kim, Minsun;Sohn, Bong Won;Byun, Do-Young;Wagner, Jan;Wajima, Kiyoaki;Cea, Christian Saez de;Kwon, Woojin;Lee, Jeong Ae;Cho, Ilje;Jeong, Dawoon;Kim, Dongjin;Ryu, Dongsoo
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.2
    • /
    • pp.32.3-32.3
    • /
    • 2016
  • Available VLBI sources at high frequencies (e.g. >22GHz) are very limited - mainly due to atmospheric fluctuations that degrade coherence time and a power-law energy distribution of particles in case of AGNs. However, simultaneous multi-frequency VLBI receiving system of the Korean VLBI Network (KVN) and its powerful VLBI phase calibration technique offer benefits in finding more weak sources at millimeter wavelengths. Based on this aspect, multi-frequency AGN survey with the KVN (MASK) project, which aims to densify an existing a VLBI catalog of extragalactic radio sources at 22/43/86/129GHz is proposed as a KVN legacy program. We selected 1220 sources of AGNs that include known VLBI sources and new fringe-detected sources using the KVN at K-band (22GHz). Among them, 138 sources were observed as pilot experiments at 22/43/86/129GHz simultaneously and excellent VLBI detection results are achieved. Therefore, we expect that MASK will open a new era in VLBI science at millimeter wavelengths by providing unprecedented number of available sources in the Universe.

  • PDF