• Title/Summary/Keyword: surrounding rock

Search Result 338, Processing Time 0.03 seconds

Development of a New Direct Shear Apparatus Considering the Boundary Conditions of Rock Joints (암반의 경계조건을 고려한 절리면 직접전단시험기 개발)

  • 이영휘;김용준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.147-157
    • /
    • 2003
  • The characteristics of a rock joint which influence the stability of rock mass structures such as cut slopes and tunnels are largely controlled by the conditions of the rock joint as well as its boundary conditions. The conditions of rock joints comprise asperity strength, roughness, and filling materials. Boundary conditions can be represented by assuming that the deformability(or stiffness) of the rock mass surrounding the joints is modelled by a spring with stiffness. A new direct shear apparatus was developed in this study, which adapts a servo control system using PID algorithm. This apparatus can be used to investigate the various aspects of shear characteristics of the rock joints at conditions of constant normal stress and constant normal stiffness and so on. The test results for saw-cut teeth joints show that shear strength should be evaluated by considering its specific boundary conditions far the design of tunnels and cut slopes.

Prediction of longitudinal wave speed in rock bolt coupled with Multilayer Neural Network (MNN) algorithm

  • Jung-Doung Yu;Geunwoo Park;Dong-Ju Kim;Hyung-Koo Yoon
    • Smart Structures and Systems
    • /
    • v.34 no.1
    • /
    • pp.17-23
    • /
    • 2024
  • Non-destructive methods are extensively utilized for assessing the integrity of rock bolts, with longitudinal wave speed being a crucial property for evaluating rock bolt quality. This research aims to propose a method for predicting reliable longitudinal wave velocities by leveraging various properties of the rock surrounding the rock bolt. The prediction algorithm employed is the Multilayer Neural Network (MNN), and the input properties includes elastic modulus, shear wave speed, compressive strength, compressional wave speed, mass density, porosity, and Poisson's ratio, totaling seven. The implementation of the MNN demonstrates high reliability, achieving a coefficient of determination of 0.996. To assess the impact of each input property on longitudinal wave speed, an importance score is derived using the random forest algorithm, with the elastic modulus identified as having the most significant influence. When the elastic modulus is the sole input parameter, the coefficient of determination for predicting the longitudinal wave speed is observed to be 0.967. The findings of this study underscore the reliability of selecting specific properties for predicting longitudinal wave speed and suggest that these insights can assist in identifying relevant input properties for rock bolt integrity assessments in future construction site experiments.

Uniaxial Compressive Strength of Rock under Non-atmospheric Environments

  • Jeong, Hae-Sik;Obara, Yuzo
    • Proceedings of the KSEG Conference
    • /
    • 2003.04a
    • /
    • pp.131-135
    • /
    • 2003
  • In order to investigate the influence of surrounding environment on strength of rock, the uniaxial compression test under non-atmospheric environments was conducted on Kumamoto andesite. The environments used in this study are water vapor, organic vapor environments as methanol, ethanol and acetone and inorganic gas environments as oxygen, nitrogen and argon. From the experimental results, it is clarified that water is the most effective agent which promotes stress corrosion of rock. Furthermore, the strength of rock increases with decreasing water vapor pressure. From the relation between uniaxial compressive strength and water vapor pressure, the stress corrosion index of Kumamoto andesite is estimated 24.

  • PDF

Study on the splitting failure of the surrounding rock of underground caverns

  • Li, Xiaojing;Chen, Han-Mei;Sun, Yanbo;Zhou, Rongxin;Wang, Lige
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.499-507
    • /
    • 2018
  • In this paper splitting failure on rock pillars among the underground caverns has been studied. The damaged structure is considered to be thin plates and then the failure mechanism of rock pillars has been studied consequently. The critical load of buckling failure of the rock plate has also been obtained. Furthermore, with a combination of the basic energy dissipation principle, generalized formulas in estimating the number of splitting cracks and in predicting the maximum deflection of thin plate have been proposed. The splitting criterion and the mechanical model proposed in this paper are finally verified with numerical calculations in FLAC 3D.

The Influence of Ground Stability with Blasting Vibration (발파진동이 지반의 안정에 미치는 영향)

  • 신진환;오세욱
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.102-107
    • /
    • 1997
  • Ground vibrations are an integral part of the process of rock blasting. The sudden acceleration of the rock by the detonation gas pressure acting on the drillhole walls induces dynamic stresses in the surrounding rock mass. This sets up a wave motion in the ground much like the motion in a bowl of jelly when disturbed by the action of a spoon. The wave motion spreads concentrically from the blasting site, particularly along the ground surface, and is therefore attenuated, since its fixed energy is spread over a greater and greater mass of material as it moves away from its origin. Some theoretical aspects of the generation and propagation of vibrations produced in rock blasting are analyzed; although it must be indicated that this is just a mere approximation to the problem, as the actual phenomena are much more complex owing to the interaction of different types of waves and their modifying mechanics.

  • PDF

New 3D failure analysis of water-filled karst cave beneath deep tunnel

  • Zhang, R.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • In this study, both 2D and 3D failure shapes of rock mass above the water-filled cavity are put forward when the surrounding rock mass cannot bear the pressure caused by the water-filled cavity. Based on the analytical expressions derived by kinematic approach, the profiles of active and passive failure patterns are plotted. The sensitivity analysis is conducted to explore the influences of different rock parameters on the failure profiles. During the excavation of the deep tunnels above the karst cavity, the water table always changes because of progressive failure of cavity roof. Therefore, it is meaningful to discuss the effects of varying water level on the failure patterns of horizontal rock layers. The changing laws of the scope of the failure pattern obtained in this work show good consistency with the fact, which could be used to provide a guide in engineering.

Centrifuge modelling of rock-socketed drilled shafts under uplift load

  • Park, Sunji;Kim, Jae-Hyun;Kim, Seok-Jung;Park, Jae-Hyun;Kwak, Ki-Seok;Kim, Dong-Soo
    • Geomechanics and Engineering
    • /
    • v.24 no.5
    • /
    • pp.431-441
    • /
    • 2021
  • Rock-socketed drilled shafts are widely used to transfer the heavy loads from the superstructure especially in mountainous area. Extensive research has been done on the behavior of rock-socketed drilled shafts under compressive load. However, little attention has been paid to uplift behavior of drilled shaft in rock, which govern the overall behavior of the foundation system. In this paper, a series of centrifuge tests have been performed to investigate the uplift response of rock-socketed drilled shafts. The pull-out tests of drilled shafts installed in layered rocks having various strengths were conducted. The load-displacement response, axial load distributions in the shaft and the unit skin friction distribution under pull-out loads were investigated. The effects of the strength of rock socket on the initial stiffness, ultimate capacity and mobilization of friction of the foundation, were also examined. The results indicated that characteristics of rock-socket has a significant influence on the uplift behavior of drilled shaft. Most of the applied uplift load were carried by socketed rock when the drilled shaft was installed in the sand over rock layer, whereas substantial load was carried by both upper and lower rock layers when the drilled shaft was completely socketed into layered rock. The pattern of mobilized shaft friction and point where the maximum unit shaft friction occurred were also found to be affected by the socket condition surrounding the drilled shaft.

A Study on Stability Analysis of Large Underground Limestone Openings considering Excavation Damaged Zone (굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구)

  • Kwon, Min-Hyuk;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.131-142
    • /
    • 2016
  • Investigation for rock joints, inspection for rock core, and laboratory tests for rock specimens, in this study, have been performed for identification of the extent and properties of Excavation Damaged Zone in a underground limestone mine, which plans to enlarge the size of openings to improve the production rate. Properties of EDZ and surrounding rock masses have been used numerically for discontinuum analysis, and it is concluded that the effect of EDZ can be increased with increasing the opening size and a blasting pattern of high precision can be suggested for the counterplan.

Dynamic Response of Underground Openings Considering the Effect of Water Saturation (지하수의 영향을 고려한 지하공동구조체의 동적응답)

  • 김선훈;김광진
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.14 no.3
    • /
    • pp.391-399
    • /
    • 2001
  • Three-dimensional dynamic analysis of underground openings subjected to explosive loadings considering the effects of water saturation is carried out in this study. The surrounding rock mass is assumed to be the limestone with 13.5% of porosity. Two calculations are compared using as identical explosive charge; the first in dry rock of 13.5% porosity, the second in the identical rock, but in a fully saturated condition. It is shown that velocity, displacement, and stress time histories are higher in saturated rock than those in dry rock through numerical studies. It is also shown that underground openings in saturated rock masses could be significantly more vulnerable to the potential damages associated with shear failure than those in dry medium.

  • PDF

Favorable driving direction of double shield TBM in deep mixed rock strata: Numerical investigations to reduce shield entrapment

  • Wen, Sen;Zhang, Chunshun;Zhang, Ya
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.237-245
    • /
    • 2019
  • In deep mixed rock strata, a double shield TBM (DS-TBM) is easy to be entrapped by a large force during tunneling. In order to reduce the probability of the entrapment, we need to investigate a favorable driving direction, either driving with or against dip, which mainly associates with the angle between the tunneling axis and strike, ${\theta}$, as well as the dip angle of rock strata, ${\alpha}$. We, therefore, establish a 3DEC model to show the changes of displacements and contact forces in mixed rock strata through LDP (longitudinal displacement profile) and LFP (longitudinal contact force profile) curves at four characteristic points on the surrounding rock. This is followed by a series of numerical models to investigate the favorable driving direction. The computational results indicate driving with dip is the favorable tunneling direction to reduce the probability of DS-TBM entrapment, irrespective of ${\theta}$ and ${\alpha}$, which is not in full agreement with the guidelines proposed in RMR. From the favorable driving direction (i.e., driving with dip), the smallest contact force is found when ${\theta}$ is equal to $90^{\circ}$. The present study is therefore beneficial for route selection and construction design in TBM tunneling.