• 제목/요약/키워드: surrounding monitoring

검색결과 281건 처리시간 0.021초

Deformation and failure mechanism exploration of surrounding rock in huge underground cavern

  • Tian, Zhenhua;Liu, Jian;Wang, Xiaogang;Liu, Lipeng;Lv, Xiaobo;Zhang, Xiaotong
    • Structural Engineering and Mechanics
    • /
    • 제72권2호
    • /
    • pp.275-291
    • /
    • 2019
  • In a super-large underground with "large span and high side wall", it is buried in mountains with uneven lithology, complicated geostress field and developed geological structure. These surrounding rocks are more susceptible to stability issues during the construction period. This paper takes the left bank of Baihetan hydropower station (span is 34m) as a case study example, wherein the deformation mechanism of surrounding rock appears prominent. Through analysis of geological, geophysical, construction and monitoring data, the deformation characteristics and factors are concluded. The failure mechanism, spatial distribution characteristics, and evolution mechanism are also discussed, where rock mechanics theory, $FLAC^{3D}$ numerical simulation, rock creep theory, and the theory of center point are combined. In general, huge underground cavern stability issues has arisen with respect to huge-scale and adverse geological conditions since settling these issues will have milestone significance based on the evolutionary pattern of the surrounding rock and the correlation analyses, the rational structure of the factors, and the method of nonlinear regression modeling with regard to the construction and development of hydropower engineering projects among the worldwide.

A Study on Environmental Monitoring of Open-cut Mining Ground Using Remote Sensing Technique

  • Tanaka Yoshiki;Tachiiri Kaoru;Gotoh Keinosuke;Hamamoto Ryota
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.549-552
    • /
    • 2004
  • Since open-cut mining excavates gradually from the top of the mountain, vegetation planting is needed to reduce negative environmental impact on the surrounding environment. Accordingly, this study aimed at performing the environmental monitoring of the open-cut mining ground using the satellite remote sensing technique. As the research technique, in order to grasp the environmental change around the open-cut mining ground, NDVI (normalized difference vegetation index) was calculated, and every year change of the vegetation activity was analyzed. The results of the study showed lower vegetation activity in the open-cut mining ground compared to the surrounding areas and suggested the need for closed monitoring by remote sensing techniques.

  • PDF

다중 차량센서 기반 도로주변환경 분석 및 모니터링 플랫폼 연구 (Study about Road-Surrounding Environment Analysis and Monitoring Platform based on Multiple Vehicle Sensors)

  • 장봉주;임상훈;김현정
    • 한국멀티미디어학회논문지
    • /
    • 제19권8호
    • /
    • pp.1505-1515
    • /
    • 2016
  • The age of autonomous vehicles has come according to development of high performance sensing and artificial intelligence technologies. And importance of the vehicle's surrounding environment sensing and observation is increasing accordingly because of its stability and control efficiency. In this paper we propose an integrated platform for efficient networking, analysis and monitoring of multiple sensing data on the vehicle that are equiped with various automotive sensors such as GPS, weather radar, automotive radar, temperature and humidity sensors. From simulation results, we could see that the proposed platform could perform realtime analysis and monitoring of various sensing data that were observed from the vehicle sensors. And we expect that our system can support drivers or autonomous vehicles to recognize optimally various sudden or danger driving environments on the road.

상수도관로의 주변 지반침하 위험도 평가를 위한 안전감시 센서 (Safety Monitoring Sensor for Underground Subsidence Risk Assessment Surrounding Water Pipeline)

  • 곽필재;박상혁;최창호;이현동
    • 센서학회지
    • /
    • 제24권5호
    • /
    • pp.306-310
    • /
    • 2015
  • IoT(Internet of Things) based underground risk assessment system surrounding water pipeline enables an advanced monitoring and prediction for unexpected underground hazards such as abrupt road-side subsidence and urban sinkholes due to a leak in water pipeline. For the development of successful assessment technology, the PSU(Water Pipeline Safety Unit) which detects the leakage and movement of water pipes. Then, the IoT-based underground risk assessment system surrounding water pipeline will be proposed. The system consists of early detection tools for underground events and correspondence services, by analyzing leakage and movement data collected from PSU. These methods must be continuous and reliable, and cover certain block area ranging a few kilometers, for properly applying to regional water supply changes.

A Vision-Based Collision Warning System by Surrounding Vehicles Detection

  • Wu, Bing-Fei;Chen, Ying-Han;Kao, Chih-Chun;Li, Yen-Feng;Chen, Chao-Jung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권4호
    • /
    • pp.1203-1222
    • /
    • 2012
  • To provide active notification and enhance drivers'awareness of their surroundings, a vision-based collision warning system that detects and monitors surrounding vehicles is proposed in this paper. The main objective is to prevent possible vehicle collisions by monitoring the status of surrounding vehicles, including the distance to the other vehicles in front, behind, to the left and to the right sides. In addition, the proposed system collects and integrates this information to provide advisory warnings to drivers. To offer the correct notification, an algorithm based on features of edge and morphology to detect vehicles is also presented. The proposed system has been implemented in embedded systems and evaluated on real roads in various lighting and weather conditions. The experimental results indicate that the vehicle detection ratios were higher than 97% in the daytime, and appropriate for real road applications.

Structural monitoring and analyses on the stability and health of a damaged railway tunnel

  • Zhao, Yiding;Yang, Junsheng;Zhang, Yongxing;Yi, Zhou
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.375-386
    • /
    • 2021
  • In this paper, a study of stability and health of a newly-built railway tunnel is presented. The field test was implemented to monitor the secondary lining due to the significant cracking behaviors influenced the stability and health of the tunnel structure. Surface strain gauges were installed for monitoring the status of crack openings, and the monitoring outputs demonstrated that the cracks were still in the developing stage. Additionally, adjacent tunnel and poor condition of surrounding rock were identified as the causes of the lining cracking by systematically characterizing the crack spatial distribution, tunnel site and surrounding rock conditions. Reconstruction of partial lining and reconstruction of the whole secondary lining were designed as the maintenance projects for different cracking regions based on the construction feasibility. For assessing the health conditions of the reinforced lining, embedded strain gauges were set up to continuously measure the strain and the internal force of the reconstructed structures. For the partially reconstructed lining, the outputs show the maximum tensile elongation is 0.018 mm during 227 days, which means the structure has no obvious deformation after maintenance. The one-year monitoring of full-section was implemented in the other two completely reconstructed cross-sections by embedded strain gauge. The outputs show the reconstructed secondary lining has undertaken the pressure of surrounding rock with the time passing. According to the calculated compressive and tensile safety factors, the completely reconstructed lining has been in reliable and safe condition during the past year after reinforcement. It can conclude that the aforementioned maintenance projects can effectively ensure the stability and health of this tunnel.

Reference Electrode for Monitoring Cathodic Protection Potential

  • Panossian, Z.;Abud, S.E.
    • Corrosion Science and Technology
    • /
    • 제16권5호
    • /
    • pp.227-234
    • /
    • 2017
  • Reference electrodes are generally implemented for the purpose of monitoring the cathodic protection potentials of buried or immersed metallic structures. In the market, many types of reference electrodes are available for this purpose, such as saturated calomel, silver/silver chloride and copper/copper sulfate. These electrodes contain a porous ceramic junction plate situated in the cylindrical body bottom to permit ionic flux between the internal electrolyte (of the reference electrode) and the external electrolyte. In this work, the copper/copper sulfate reference electrode was modified by replacing the porous ceramic junction plate for a metallic platinum wire. The main purpose of this modification was to avoid the ion copper transport from coming from the inner reference electrode solution into the surrounding electrolyte, and to mitigate the copper plating on the coupon surfaces. Lab tests were performed in order to compare the performance of the two mentioned reference electrodes. We verified that the experimental errors associated with the measurements conducted with developed reference electrode would be negligible, as the platinum surface area exposed to the surrounding electrolyte and/or to the reference electrolyte are maintained as small as possible.

스마트시티 IoT플랫폼 구축을 위한 자율사물 모니터링 시스템 적용성 평가 (Application on Autonomous Things Monitoring System for IoT Platform of Smart City)

  • 유찬호;백승철
    • 토지주택연구
    • /
    • 제11권1호
    • /
    • pp.103-108
    • /
    • 2020
  • Autonomous things system is a technology that judges and acts based on using surrounding information by itself, and it is evaluated as a future technology that can replace the current IoT technology. The current IoT technology is widely used from facility monitoring to machine control but it is shown weakness as a evaluation and prediction technique despite of smart city important technology. In this study, in order to confirm the application of the autonomous things technology, a monitoring system was installed on a real reservoir dam facility and long-term monitoring was performed that the measuring device itself judges and control as a facility monitoring technology. The autonomous things technology was confirmed during 19 months and it is possible to continuous measurement in the same way as current automated instrumentation. In addition, it was confirmed that the ICT device itself could to control autonomously measurement cycle according to the rainfall by itself.

Field monitoring of splitting failure for surrounding rock masses and applications of energy dissipation model

  • Wang, Zhi-shen;Li, Yong;Zhu, Wei-shen;Xue, Yi-guo;Jiang, Bei;Sun, Yan-bo
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.595-609
    • /
    • 2017
  • Due to high in-situ stress and brittleness of rock mass, the surrounding rock masses of underground caverns are prone to appear splitting failure. In this paper, a kind of loading-unloading variable elastic modulus model has been initially proposed and developed based on energy dissipation principle, and the stress state of elements has been determined by a splitting failure criterion. Then the underground caverns of Dagangshan hydropower station is analyzed using the above model. For comparing with the monitoring results, the entire process of rock splitting failure has been achieved through monitoring the splitting failure on side walls of large-scale caverns in Dagangshan via borehole TV, micro-meter and deformation resistivity instrument. It shows that the maximum depth of splitting area in the downstream sidewall of the main power house is approximately 14 m, which is close to the numerical results, about 12.5 m based on the energy dissipation model. As monitoring result, the calculation indicates that the key point displacement of caverns decreases firstly with the distance from main powerhouse downstream side wall rising, and then increases, because this area gets close to the side wall of main transformer house and another smaller splitting zone formed here. Therefore it is concluded that the energy dissipation model can preferably present deformation and fracture zones in engineering, and be very useful for similar projects.

Probabilistic analysis of tunnel collapse: Bayesian method for detecting change points

  • Zhou, Binghua;Xue, Yiguo;Li, Shucai;Qiu, Daohong;Tao, Yufan;Zhang, Kai;Zhang, Xueliang;Xia, Teng
    • Geomechanics and Engineering
    • /
    • 제22권4호
    • /
    • pp.291-303
    • /
    • 2020
  • The deformation of the rock surrounding a tunnel manifests due to the stress redistribution within the surrounding rock. By observing the deformation of the surrounding rock, we can not only determine the stability of the surrounding rock and supporting structure but also predict the future state of the surrounding rock. In this paper, we used grey system theory to analyse the factors that affect the deformation of the rock surrounding a tunnel. The results show that the 5 main influencing factors are longitudinal wave velocity, tunnel burial depth, groundwater development, surrounding rock support type and construction management level. Furthermore, we used seismic prospecting data, preliminary survey data and excavated section monitoring data to establish a neural network learning model to predict the total amount of deformation of the surrounding rock during tunnel collapse. Subsequently, the probability of a change in deformation in each predicted section was obtained by using a Bayesian method for detecting change points. Finally, through an analysis of the distribution of the change probability and a comparison with the actual situation, we deduced the survey mark at which collapse would most likely occur. Surface collapse suddenly occurred when the tunnel was excavated to this predicted distance. This work further proved that the Bayesian method can accurately detect change points for risk evaluation, enhancing the accuracy of tunnel collapse forecasting. This research provides a reference and a guide for future research on the probability analysis of tunnel collapse.