• 제목/요약/키워드: surprisal

검색결과 4건 처리시간 0.019초

문항 응답 데이터에서 문항간 연관규칙의 질적 향상을 위한 도구 개발 (A Measure for Improvement in Quality of Association Rules in the Item Response Dataset)

  • 곽은영;김현철
    • 컴퓨터교육학회논문지
    • /
    • 제10권3호
    • /
    • pp.1-8
    • /
    • 2007
  • 본 논문은 연관규칙 마이닝을 이용하여 성취도 평가 결과인 문항 응답 데이터를 대상으로 의미있는 문항간 관련성을 찾아낼 수 있는 도구를 개발하는데 연구의 목적이 있다. 제안된 도구는 의미없는 데이터들을 제거하여 보다 더 흥미(interestingness)있는 연관규칙을 생성하도록 하며, 이러한 결과는 교수-학습 방법이나 문제은행의 질을 향상시키는데 필요한 많은 정보를 제공할 수 있을 것이다. 이를 위하여 임의의 문항 응답 실험 데이터 집합을 생성하고 정보이론(Information Theory) 기반의 surprisal 이라는 도구를 개발하여 의미 없는 데이트를 제거한 후, 연관규칙을 추출하였다. 실험 데이터는 특정 문항간 관계가 의도적으로 빈발 생성되도록 만들어지며, 추출된 연관규칙이 그러한 문항간 관계를 적절히 반영하고 있는지의 여부를 평가하고, 원본 데이터와 지지도(support) 기반으로 추출된 연관규칙과 비교함으로써 surprisal 도구의 타당성을 증명하였다.

  • PDF

The Unsupervised Learning-based Language Modeling of Word Comprehension in Korean

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권11호
    • /
    • pp.41-49
    • /
    • 2019
  • 본 연구는 비지도 기계학습 기술과 코퍼스의 각 단어를 이용하여 한국어 단어를 형태소 분석하는 언어 모델을 구축하는데 목적을 둔다. 그리고 이 언어 모델의 단어 형태소 분석의 결과와 언어 심리 실험결과에서 얻은 한국어 언어사용자의 단어 이해/판단 시간이 상관관계을 갖는지를 규명하고자 한다. 논문에서는 한국어 세종코퍼스를 언어 모델로 학습하여 형태소 분리 규칙을 통해 한국어 단어를 자동 분리하는데 발생하는 단어 정보량(즉, surprisal(놀라움) 정도)을 측정하여 실제 단어를 읽는데 걸리는 반응 시간과 상관이 있는지 분석하였다. 이를 위해 코퍼스에서 단어에 대한 형태 구조 정보를 파악하기 위해 Morfessor 알고리즘을 적용하여 단어의 하위 단위 분리와 관련한 문법/패턴을 추출하고 형태소를 분석하는 언어 모델이 예측하는 정보량과 반응 시간 사이의 상관관계를 알아보기 위하여 선형 혼합 회귀(linear mixed regression) 모형을 설계하였다. 제안된 비지도 기계학습의 언어 모델은 파생단어를 d-형태소로 분석해서 파생단어의 음절의 형태로 처리를 하였다. 파생단어를 처리하는 데 필요한 사람의 인지 노력의 양 즉, 판독 시간 효과가 실제로 형태소 분류하는 기계학습 모델에 의한 단어 처리/이해로부터 초래될 수 있는 놀라움과 상관함을 보여 주었다. 본 연구는 놀라움의 가설 즉, 놀라움 효과는 단어 읽기 또는 처리 인지 노력과 관련이 있다는 가설을 뒷받침함을 확인하였다.

KoBERT와 KR-BERT의 은닉층별 통사 및 의미 처리 성능 평가 (How are they layerwisely 'surprised', KoBERT and KR-BERT?)

  • 최선주;박명관;김유희
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.340-345
    • /
    • 2021
  • 최근 많은 연구들이 BERT를 활용하여, 주어진 문맥에서 언어학/문법적으로 적절하지 않은 단어를 인지하고 찾아내는 성과를 보고하였다. 하지만 일반적으로 딥러닝 관점에서 NLL기법(Negative log-likelihood)은 주어진 문맥에서 언어 변칙에 대한 정확한 성격을 규명하기에는 어려움이 있다고 지적되고 있다. 이러한 한계를 해결하기 위하여, Li et al.(2021)은 트랜스포머 언어모델의 은닉층별 밀도 추정(density estimation)을 통한 가우시안 확률 분포를 활용하는 가우시안 혼합 모델(Gaussian Mixture Model)을 적용하였다. 그들은 트랜스포머 언어모델이 언어 변칙 예문들의 종류에 따라 상이한 메커니즘을 사용하여 처리한다는 점을 보고하였다. 이 선행 연구를 받아들여 본 연구에서는 한국어 기반 언어모델인 KoBERT나 KR-BERT도 과연 한국어의 상이한 유형의 언어 변칙 예문들을 다른 방식으로 처리할 수 있는지를 규명하고자 한다. 이를 위해, 본 연구에서는 한국어 형태통사적 그리고 의미적 변칙 예문들을 구성하였고, 이 예문들을 바탕으로 한국어 기반 모델들의 성능을 놀라움-갭(surprisal gap) 점수를 계산하여 평가하였다. 본 논문에서는 한국어 기반 모델들도 의미적 변칙 예문을 처리할 때보다 형태통사적 변칙 예문을 처리할 때 상대적으로 보다 더 높은 놀라움-갭 점수를 보여주고 있음을 발견하였다. 즉, 상이한 종류의 언어 변칙 예문들을 처리하기 위하여 다른 메커니즘을 활용하고 있음을 보였다.

  • PDF

The Ability of L2 LSTM Language Models to Learn the Filler-Gap Dependency

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권11호
    • /
    • pp.27-40
    • /
    • 2020
  • 본 논문은 장단기기억신경망(LSTM)이 영어를 배우면서 학습한 암묵적 통사 관계인 필러-갭 의존 관계를 조사하여 영어 문장 학습량과 한국인 영어 학습자(L2ers)의 문장 처리 패턴 간의 상관관계를 규명한다. 이를 위해, 먼저 장단기기억신경망 언어모델(LSTM LM)을 구축하였다. 이 모델은 L2ers가 영어 학습 과정에서 잠재적으로 배울 수 있는 L2 코퍼스의 영어 문장들로 심층학습을 하였다. 다음으로, 이 언어 모델을 이용하여 필러-갭 의존 관계 구조를 위반한 영어 문장을 대상으로 의문사 상호작용 효과(wh-licensing interaction effect) 즉, 정보 이론의 정보량인 놀라움(surprisal)의 정도를 계산하여 문장 처리 양상을 조사하였다. 또한 L2ers 언어모델과 상응하는 원어민 언어모델을 비교 분석함으로써, 두 언어모델이 문장 처리에서 필러-갭 의존 관계에 내재된 추상적 구문 구조를 추적할 수 있음을 보여주었을 뿐만 아니라, 또한 선형 혼합효과 회귀모델을 사용하여 본 논문의 중심 연구 주제인 의존 관계 처리에 있어서 원어민 언어모델과 L2ers 언어모델간 통계적으로 유의미한 차이가 존재함을 규명하였다.