• Title/Summary/Keyword: surgical guide

Search Result 188, Processing Time 0.025 seconds

Maxillary Positioning Device for Intermediate Waferless Orthognathic Surgery

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.2
    • /
    • pp.87-89
    • /
    • 2016
  • Le fort 1 osteotomy surgery is one of the most popular surgical methods for the treatment of patients with facial bone deformities. An intermediate wafer splint is used to fix the bone segment to the planned position, but there are many steps that can cause errors. To reduce these errors, we propose a method of using a surgical guide made with virtual surgical simulation.

Computer-Assisted Virtual Simulation and Surgical Treatment for Facial Asymmetry Induced by Fibrous Dysplasia

  • Lee, Jung-woo
    • Journal of International Society for Simulation Surgery
    • /
    • v.3 no.1
    • /
    • pp.33-35
    • /
    • 2016
  • Fibrous dysplasia(FD) is a disorder in which normal bone is replaced with pathologic tissue. When occurring in craniofacial regions, the zygomaticomaxillary complex is most commonly affected and this pathologic lesion results in facial asymmetry. and By using computer-assisted virtual simulation, precise maxillofacial contouring was achieved for harmonious facial morphology and the surgical procedure was simplified and the surgery brought satisfactory results in terms of both esthetics and functionality.

Accuracy assessment of implant placement using a stereolithographic surgical guide made with digital scan (디지털 스캔을 이용하여 제작된 임플란트 수술가이드의 정확도)

  • Jeong, Seung-Mi;Fang, Jeong-Whan;Hwang, Chan-Hyeon;Kang, Se-Ha;Choi, Byung-Ho;Fang, Yiqin;Jeon, Hyongtae;An, Sunghun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.53 no.2
    • /
    • pp.111-119
    • /
    • 2015
  • Purpose: The objective of this study was to evaluate the accuracy of a stereolithographic surgical guide that was made with information from intraoral digital impressions and cone beam CT (CBCT). Materials and methods: Six sets of resin maxilla and mandible models with missing teeth were used in this study. Intraoral digital impressions were made. The virtual models provided by these intraoral digital impressions and by the CBCT scan images of the resin models were used to create a surgical guide. Implant surgery was performed on the resin models using the surgical guide. After implant placement, the models were subjected to another CBCT scan to compare the planned and actual implant positions. Deviations in position, depth and axis between the planned and actual positions were measured for each implant. Results: The mean deviation of the insertion point and angulation were 0.28 mm and $0.26^{\circ}$, apex point were 0.11 mm and 0.14 mm respectively. The implants were situated at a mean of 0.44 mm coronal to the planned vertical position. Conclusion: This study demonstrates that stereolithographic surgical guides created without the use of impressions and stone models show promising accuracy in implant placement.

Computer Integrated Surgical Robot System for Spinal Fusion

  • Kim Sungmin;Chung Goo Bong;Oh Se Min;Yi Byung-Ju;Kim Whee Kuk;Park Jong Il;Kim Young Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.265-270
    • /
    • 2005
  • A new Computer Integrated Surgical Robot system is composed of a surgical robot, a surgical planning system, and an optical tracking system. The system plays roles of an assisting surgeon and taking the place of surgeons for inserting a pedicle screw in spinal fusion. Compared to pure surgical navigation systems as well as conventional methods for spinal fusion, it is able to achieve better accuracy through compensating for the portending movement of the surgical target area. Furthermore, the robot can position and guide needles, drills, and other surgical instruments or conducts drilling/screwing directly. Preoperatively, the desired entry point, orientation, and depth of surgical tools for pedicle screw insertion are determined by the surgical planning system based on CT/MR images. Intra-operatively, position information on surgical instruments and targeted surgical areas is obtained from the navigation system. Two exemplary experiments employing the developed image-guided surgical robot system are conducted.

Guide flange prosthesis for early management of reconstructed hemimandibulectomy: a case report

  • Patil, Pravinkumar Gajanan;Patil, Smita Pravinkumar
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.3
    • /
    • pp.172-176
    • /
    • 2011
  • Surgical resection of the mandible due to presence of benign or malignant tumor is the most common cause of the mandibular deviation. Depending upon the location and extent of the tumor in the mandible, various surgical treatment modalities like marginal, segmental, hemi, subtotal, or total mandibulectomy can be performed. The clinicians must wait for extensive period of time for completion of healing and acceptance of the osseous graft before considering the definitive prosthesis. During this initial healing period prosthodontic intervention is required for preventing the mandibular deviation. This case report describes early prosthodontic management of a patient who has undergone a reconstructed hemi-mandibulectomy with modified mandibular guide flange prosthesis. The prosthesis helps patient moving the mandible normally without deviation during functions like speech and mastication.

Implant-assisted Removable Prosthetic Rehabilitation of a Patient with Crossed Occlusion

  • Oh, Hyun-Su;Lim, Young-Jun;Kim, Myung-Joo;Kwon, Ho-Beom
    • Journal of Korean Dental Science
    • /
    • v.14 no.1
    • /
    • pp.32-39
    • /
    • 2021
  • 'Crossed occlusion' is the condition in which occlusal intercuspation is lost when several teeth on upper and lower jaw remain. This report describes a clinical case in which a patient had two upper-left posterior teeth and two lower-right posterior teeth; typically known as left-right crossed occlusion. Considering the patient's general condition and financial situation, the treatment plan included placement of two implants on each jaw against the remaining teeth using surgical guide. To find out the ideal position of implants, digital diagnostic wax-up was preceded by superimposing the cast and cone beam computed tomography image, which was aided with radiographic stents. The consequent surveyed implant bridge provided stable vertical stop for fabrication of the implant assisted removable partial dentures. The patient was satisfied with the functionality and esthetics of definitive prosthesis.

THE MANAGEMENT OF A COMPLEX IMPLANT CASE USING CAD-CAM TECHNOLOGY: A CLINICAL REPORT

  • Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.6
    • /
    • pp.634-638
    • /
    • 2008
  • PURPOSE: The application of computer-aided technology to implant dentistry has created new opportunities for treatment planning, surgery and prosthodontic treatment, but the correct selection and combination of available methods may be challenging in times. Hence, the purpose of this case report is to present a combination of several computer-aided tools as approaches to manage complicated implant case. MATERIAL AND METHODS: A 47 year-old female patient with severe dental anxiety, high expectations, financial restrictions and poor compliance presented for a fixed rehabilitation. A CT scan with a radiographic template obtained with software (SimPlant, Materialize, Leuven, Belgium) was used for treatment planning. The surgical plan was created and converted into a stereolithographic model of the maxilla with bone-supported surgical templates (SurgiGuide, Materialise, Leuven, Belgium), that allowed for the precise placement of 7 implants in a severely resorbed edentulous maxilla. After successful osseointegration, an accurate scan model served as the basis for the fabrication of a one-piece milled titanium framework using the Procera (Nobel Biocare, Gothenburg, Sweden) technology. The final rehabilitation of the edentulous maxilla was rendered in the form of a screw-retained maxillary metal-reinforced resin-based complete prosthesis. RESULTS: Despite challenging circumstances, 7 implants could be placed without bone augmentation in a severely resorbed maxilla using the SimPlant software for pre-implant analysis and the SurgiGuide-system as the surgical template. The patient was successfully restored with a fixed full arch restoration, utilizing the Procera system for the fabrication of a milled titanium framework.

3D computer-assisted orthognathic surgery (3차원 디지털 시스템을 이용한 턱교정 수술)

  • Kim, Choong Nam;Kimm, Soo Ho;Lim, Ho Kyung;Lee, Eui Seok
    • The Journal of the Korean dental association
    • /
    • v.57 no.2
    • /
    • pp.100-104
    • /
    • 2019
  • Orthognathic surgery is designed to correct problems of the jaw and face and restore facial harmony. The limitations of orthognathic surgery occur at all steps of the surgical workflow: preoperative planning, simulation, and operation. Many studies have shown the accuracy and advantages of 3 dimensional computer-assisted program for orthognathic surgery. The purpose of this paper is to introduce the accuracy of the maxillary repositioning in patients who underwent orthognathic surgery using a 3 dimensional computer assisted surgery program. The reliability of computer guided orthognathic surgery using splint and surgical guide need to be improved further. The 3 dimensional computer assisted analysis seems to be more precise to interpret than two-dimensional analysis. High-precision planning of orthognathic surgery has predictable results. Three-dimensional computer assisted orthognathic surgery has the following advantages : planned surgical movement is possible, splints guide with CAD/CAM technology; and increase predictable results .Computer assisted simulation surgery ensures accuracy during surgery, thereby facilitating predictable results. It may provide solution that enables surgeon to perform planned surgery more accurately.

  • PDF

Immediate loading of mandibular single implant by using surgical guide and modeless digital prosthesis: a case report (수술용 가이드와 modeless 디지털 보철물을 이용한 하악 구치부 단일 임플란트 즉시 하중 증례)

  • Lim, Hyun-jeong;Kim, Myung-Joo;Kwon, Ho-Beom;Lim, Young-Jun
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2017
  • In this case report, immediate loading of an implant-supported single-tooth prosthesis through complete digital workflow. A patient presented for restoration of missing a single tooth in the mandibular first molar. The digital impression was made with intraoral scanner and implant was placed using surgical guide pre-fabricated with pre-operative computed tomography (CT) and scan data. After 1 week later, prefabricated customized abutment and provisional restoration were connected for immediate loading. After 8 weeks later, abutment level impression was taken by intraoral scanner. At 3 months later from implant installation, monolithic zirconia crown were fabricated. This clinical report presents satisfying result in accuracy and patient satisfaction. A completely modeless digital procedure met expectations regarding precision, esthetics, and functionality.

The accuracy of a 3D printing surgical guide determined by CBCT and model analysis

  • Ma, Boyoung;Park, Taeseok;Chun, Inkon;Yun, Kwidug
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.279-285
    • /
    • 2018
  • PURPOSE. The aim of this clinical study was to assess the accuracy of the implants placed using a universal digital surgical guide. MATERIALS AND METHODS. Among 17 patients, 28 posterior implants were included in this study. The digital image of the soft tissue acquired from cast scan and hard tissue from CBCT have been superimposed and planned the location, length, diameter of the implant fixture. Then digital surgical guides were created using 3D printer. Each of angle deviations, coronal, apical, depth deviations of planned and actually placed implants were calculated using CBCT scans and casts. To compare implant positioning errors by CBCT scans and plaster casts, data were analyzed with independent samples t-test. RESULTS. The results of the implant positioning errors calculated by CBCT and casts were as follows. The means for CBCT analyses were: angle deviation: $4.74{\pm}2.06^{\circ}$, coronal deviation: $1.37{\pm}0.80mm$, and apical deviation: $1.77{\pm}0.86mm$. The means for cast analyses were: angle deviation: $2.43{\pm}1.13^{\circ}$, coronal deviation: $0.82{\pm}0.44mm$, apical deviation: $1.19{\pm}0.46mm$, and depth deviation: $0.03{\pm}0.65mm$. There were statistically significant differences between the deviations of CBCT scans and cast. CONCLUSION. The model analysis showed lower deviation value comparing the CBCT analysis. The angle and length deviation value of the universal digital guide stent were accepted clinically.