• Title/Summary/Keyword: surface-based image registration

Search Result 33, Processing Time 0.022 seconds

Localization of Unmanned Ground Vehicle using 3D Registration of DSM and Multiview Range Images: Application in Virtual Environment (DSM과 다시점 거리영상의 3차원 등록을 이용한 무인이동차량의 위치 추정: 가상환경에서의 적용)

  • Park, Soon-Yong;Choi, Sung-In;Jang, Jae-Seok;Jung, Soon-Ki;Kim, Jun;Chae, Jeong-Sook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.7
    • /
    • pp.700-710
    • /
    • 2009
  • A computer vision technique of estimating the location of an unmanned ground vehicle is proposed. Identifying the location of the unmaned vehicle is very important task for automatic navigation of the vehicle. Conventional positioning sensors may fail to work properly in some real situations due to internal and external interferences. Given a DSM(Digital Surface Map), location of the vehicle can be estimated by the registration of the DSM and multiview range images obtained at the vehicle. Registration of the DSM and range images yields the 3D transformation from the coordinates of the range sensor to the reference coordinates of the DSM. To estimate the vehicle position, we first register a range image to the DSM coarsely and then refine the result. For coarse registration, we employ a fast random sample matching method. After the initial position is estimated and refined, all subsequent range images are registered by applying a pair-wise registration technique between range images. To reduce the accumulation error of pair-wise registration, we periodically refine the registration between range images and the DSM. Virtual environment is established to perform several experiments using a virtual vehicle. Range images are created based on the DSM by modeling a real 3D sensor. The vehicle moves along three different path while acquiring range images. Experimental results show that registration error is about under 1.3m in average.

Use of the surface-based registration function of computer-aided design/computer-aided manufacturing software in medical simulation software for three-dimensional simulation of orthognathic surgery

  • Kang, Sang-Hoon;Lee, Jae-Won;Kim, Moon-Key
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.39 no.4
    • /
    • pp.197-199
    • /
    • 2013
  • Three-dimensional (3D) computed tomography image models are helpful in reproducing the maxillofacial area; however, they do not necessarily provide an accurate representation of dental occlusion and the state of the teeth. Recent efforts have focused on improvement of dental imaging by replacement of computed tomography with other detailed digital images. Unfortunately, despite the advantages of medical simulation software in dentofacial analysis, diagnosis, and surgical simulation, it lacks adequate registration tools. Following up on our previous report on orthognathic simulation surgery using computer-aided design/computer-aided manufacturing (CAD/CAM) software, we recently used the registration functions of a CAD/CAM platform in conjunction with surgical simulation software. Therefore, we would like to introduce a new technique, which involves use of the registration functions of CAD/CAM software followed by transfer of the images into medical simulation software. This technique may be applicable when using various registration function tools from different software platforms.

Volume measurement of limb edema using three dimensional registration method of depth images based on plane detection (깊이 영상의 평면 검출 기반 3차원 정합 기법을 이용한 상지 부종의 부피 측정 기술)

  • Lee, Wonhee;Kim, Kwang Gi;Chung, Seung Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.7
    • /
    • pp.818-828
    • /
    • 2014
  • After emerging of Microsoft Kinect, the interest in three-dimensional (3D) depth image was significantly increased. Depth image data of an object can be converted to 3D coordinates by simple arithmetic calculation and then can be reconstructed as a 3D model on computer. However, because the surface coordinates can be acquired only from the front area facing Kinect, total solid which has a closed surface cannot be reconstructed. In this paper, 3D registration method for multiple Kinects was suggested, in which surface information from each Kinect was simultaneously collected and registered in real time to build 3D total solid. To unify relative coordinate system used by each Kinect, 3D perspective transform was adopted. Also, to detect control points which are necessary to generate transformation matrix, 3D randomized Hough transform was used. Once transform matrices were generated, real time 3D reconstruction of various objects was possible. To verify the usefulness of suggested method, human arms were 3D reconstructed and the volumes of them were measured by using four Kinects. This volume measuring system was developed to monitor the level of lymphedema of patients after cancer treatment and the measurement difference with medical CT was lower than 5%, expected CT reconstruction error.

3-Dimensional Dental Surgery System based on PC using anatomical landmarks (해부학적 계측점을 이용한 PC-기반3차원 치과수술 시스템)

  • 이경상;유선국;김형돈;배현수;김남현
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.139-148
    • /
    • 1999
  • In this paper, we designed the dental surgery system based on PC. This system predict post operated 3-dimensional image, So the patient has no need to take CT after surgery and expose his body to radiological damage. We predict the post operated skull from the patient's CT with pre and post cephalometry X-ray. Our novel procedures, to register X-ray and CT, are based on anatomical landmarks, singular value decomposition. And we display the predicted image 3-dimensionally by surface rendering. We verified this system by dry skull experiment and clinical experiment. When significance level is 0.05, there is on significance.

  • PDF

A study on image registration and fusion of MRI and SPECT/PET (뇌의 단일 광자 방출 전산화 단층촬영 영상, 양전자 방출 단층 촬영 영상 그리고 핵자기공명 영상의 융합과 등록에 관한 연구)

  • Joo, Ra-Hyung;Choi, Yong;Kwon, Soo-Il;Heo, Soo-Jin
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.47-53
    • /
    • 1998
  • Nuclear Medicine Images have comparatively poor spatial resolution, making it difficult to relate the functional information which they contain to precise anatomical structures. Anatomical structures useful in the interpretation of SPECT /PET Images were radiolabelled. PET/SPECT Images Provide functional information, whereas MRI mainly demonstrate morphology and anatomical. Fusion or Image Registration improves the information obtained by correlating images from various modalities. Brain Scan were studied on one or more occations using MRI and SPECT. The data were aligned using a point pair methods and surface matching. SPECT and MR Images was tested using a three dimensional water fillable Hoffman Brain Phantom with small marker and PET and MR Image was tested using a patient data. Registration of SPECT and MR Images is feasible and allows more accurate anatomic assessment of sites of abnormal uptake in radiolabeled studies. Point based registration was accurate and easily implemented three dimensional registration of multimodality data set for fusion of clinical anatomic and functional imaging modalities. Accuracy of a surface matching algorithm and homologous feature pair matching for three dimensional image registration of Single Photon Emission Computed Tomography Emission Computed Tomography (SPECT), Positron Emission Tomography (PET) and Magnetic Resonance Images(MRD was tested using a three dimensional water fill able brain phantom and Patients data. Transformation parameter for translation and scaling were determined by homologous feature point pair to match each SPECT and PET scan with MR images.

  • PDF

A Study on Shape Registration Using Level-Set Model and Surface Registration Volume Rendering of 3-D Images (레밸 세트 모텔을 이용한 형태 추출과 3차원 영상의 표면 정합 볼륨 렌더링에 관한 연구)

  • 김태형;염동훈;주동현;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2002
  • In this paper, we present a new geometric active contour model based on level set methods introduced by Osher and Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image. Using anisotropic diffusion filtering for each slice, we have the result with reduced noise and extracted exact shape. Volume rendering operates on three-dimensional data, processes it, and transforms it into a simple two-dimensional image.

  • PDF

Multiple Ship Object Detection Based on Background Registration Technique and Morphology Operation (배경 구축 기법과 형태학적 연산 기반의 다중 선박 객체 검출)

  • Kim, Won-Hee;Arshad, Nasim;Kim, Jong-Nam;Moon, Kwang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.11
    • /
    • pp.1284-1291
    • /
    • 2012
  • Ship object detection is a technique to detect the existence and the location of ship when ship objects are shown on input image sequence, and there are wide variations in accuracy due to environmental changes and noise of input image. In order to solve this problem, in this paper, we propose multiple ship object detection based on background registration technique and morphology operation. The proposed method consists of the following five steps: background elimination step, noise elimination step, object standard position setting step, object restructure step, and multiple object detection steps. The experimental results show accurate and real-time ship detection for 15 different test sequences with a detection rate of 98.7%, and robustness against variable environment. The proposed method may be helpful as the base technique of sea surface monitoring or automatic ship sailing.

IMAGE FUSION ACCURACY FOR THE INTEGRATION OF DIGITAL DENTAL MODEL AND 3D CT IMAGES BY THE POINT-BASED SURFACE BEST FIT ALGORITHM (Point-based surface best fit 알고리즘을 이용한 디지털 치아 모형과 3차원 CT 영상의 중첩 정확도)

  • Kim, Bong-Chul;Lee, Chae-Eun;Park, Won-Se;Kang, Jeong-Wan;Yi, Choong-Kook;Lee, Sang-Hwy
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.555-561
    • /
    • 2008
  • Purpose: The goal of this study was to develop a technique for creating a computerized composite maxillofacial-dental model, based on point-based surface best fit algorithm and to test its accuracy. The computerized composite maxillofacial-dental model was made by the three dimensional combination of a 3-dimensional (3D) computed tomography (CT) bone model with digital dental model. Materials and Methods: This integration procedure mainly consists of following steps : 1) a reconstruction of a virtual skull and digital dental model from CT and laser scanned dental model ; 2) an incorporation of dental model into virtual maxillofacial-dental model by point-based surface best fit algorithm; 3) an assessment of the accuracy of incorporation. To test this system, CTs and dental models from 3 volunteers with cranio-maxillofacial deformities were obtained. And the registration accuracy was determined by the root mean squared distance between the corresponding reference points in a set of 2 images. Results and Conclusions: Fusion error for the maxillofacial 3D CT model with the digital dental model ranged between 0.1 and 0.3 mm with mean of 0.2 mm. The range of errors were similar to those reported elsewhere with the fiducial markers. So this study confirmed the feasibility and accuracy of combining digital dental model and 3D CT maxillofacial model. And this technique seemed to be easier for us that its clinical applicability can good in the field of digital cranio-maxillofacial surgery.

SPECIAL CONSIDERATION ON THE RADARSAT REPEAT-PASS SAR INTERFEROMETRY

  • Kim, Sang-Wan;Won, Joong-Sun;Moon, Wooil-M.
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.474-478
    • /
    • 1999
  • SAR interferometry (InSAR) using the space-borne Synthetic Aperture Radar (SAR) have recently become one of the most effective tools monitoring surface changes caused by landslides, earthquakes, subsidences or volcanic eruption. This study focuses on examining the feasibility of InSAR using the RADARSAT data. Although the RABARSAT SAR with its high resolution and variable incidence angle has several advantages for repeat-pass InSAR, it has two key limitations: first, the orbit is not precisely known; and second, RADARSAT's 24-day repeat pass interval is not very favourable for retaining useful coherence. In this study, two pairs of RADARSAT data in the Nahanni area, NWT, Canada have been tested. We will discuss about the special consideration required on the interferometric processing steps specifically for RADARSAT data including image co-registration, spectral filtering in both azimuth and range, estimation of the interferometric baseline, and correction of the interferogram with respect to the "flat earth" phase contribution. Preliminary results can be summarized as: i) the properly designed azimuth filter based upon the antenna characteristic improves coherence considerably if difference in Doppler centroid of the two images is relatively large; ii) the co-registration process combined by fringe spectrum and amplitude cross-correlation techniques results in optimal matching; iii) the baseline is not always possible to be estimated from the definitive orbit information.

  • PDF

Performance Comparison and Analysis of Moment Based- with Surface Based Multimodality Image Registration (다중모달리티 영상에 대한모멘트 기반 정합기법과 표면정보 기반 정합기법의 성능 비교 분석)

  • 박지영;김민정;최유주;김명희
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.286-288
    • /
    • 2003
  • 모멘트 기반 정합은 전처리 과정을 통하여 수행되는 정합 대상기관의 형태정보를 추출하여, 이를 기반으로 대상기관의 무게중심 및 주축을 계산하고 이들 모멘트 정보를 일치시킴으로써 서로 다른 3차원 영상에 대한 정합을 유도하는 기법이다. 표면정보 기반 영상정합은 대상기관에서 추출된 표면정보를 기반으로 변환을 추정하여 서로 다른 영상의 전형적 형태의 유사성 정도를 최대화함으로써 정합을 수행하는 방법이다. 본 연구에서는 서로 다른 모달리티 영상에 대한 정합을 위하여 모멘트 기반 정합기법과 표면정보기반정합기법을 각기 구현하고 이들 방법에 대한 성능 및 문제점을 비교 분석하였다.

  • PDF