다중 모달리티 영상정합은 서로 다른 성격의 두 영상의 중요정보를 결합하여 복합적 정보를 얻기 위해 널리 사용되는 영상처리 기법이다. 본 연구에서는 정합 대상 객체의 초기위치 및 방향에 종속적이지 않고, 낮은 정합오차 범위 내에서의 안정적인 정합을 지원하기 위하여 기존의 표면기반 정합 기법을 개선한 모멘트 정보 및 표면거리 기반의 정합 기법을 제시한다. 제안방법에서는 우선 정합대상객체의 표면 윤곽 점을 추출하고, 이를 기반으로 대상객체의 모멘트 정보를 추출하여, 표면거리 기반 상세 정합 이전에 모멘트 정보를 일치시키는 변환을 수행함으로써, 정합이전 대상객체의 위치 및 방향이 상이한 경우에 있어서도 정합이 안정적으로 수행되도록 한다. 또한 테스트 영상에 대한 표면 대표점 추출 시, 표면 코너추출법을 적용함으로써, 기존 표면 정보 기반 정합기법에서 일반적으로 사용하고 있는 무작위 샘플링 및 일정간격 샘플링에 의한 취약점을 보완한다. 본 논문에서 제안기법의 검증을 위하여 뇌 부위 자기공명단층영상(MRI)과 양자 방출 단층 촬영 영상(PET)을 적용하고, 정합오류율과 정합결과에 대한 2,3차원 가시화 영상의 육안평가를 통하여 정확성 및 안정성 측면을 검증한다.
서로 다른 종류의 영상을 정확하게 연관시켜 복합적인 정보를 제공하는 다중모달리티 의료 영상정합기법 중 표면정보 기반 영상정합에서는 일반적으로 동일 대상에 대한 서로 다른 모달리티에서 추출된 표면 윤곽정보 사이의 거리를 최소화함으로써 매칭이 이루어진다. 그런데 동일대상에 대해 취득되는 서로 다른 두 모달리티는 관심 영역 상의 표면 특성이 서로 유사하다. 그러므로 다중모달리티 영상정합에서 표면거리와 함께 표면의 형태 특성을 고려하여 두 영상을 매칭하는 방법이 정합결과의 정확도를 향상시킬 수 있다. 본 연구에서는 동일 대상의 서로 다른 두 모달리티 뇌영상 간의 표면거리와 표면곡률을 최적화하는 정합기법을 제안한다. 영상정합은 참조영상과 테스트영상에 대한 표면정보 생성과 이 두 개의 표면정보를 최적화하는 단계로 구성된다. 표면정보 생성 단계에서는 두 모달리티로부터 관심영역의 윤곽선을 추출하고, 이 중 참조 볼륨의 윤곽선에 대해서는 표면거리맵과 표면곡률맵을 구성하게 된다. 최적화 단계에서는 표면거리맵과 표면곡률맵을 참조하는 최적화 평가함수(cost function)에 의해 두 객체의 표면거리 차이와 표면곡률 차이를 최소화하는 정합 변환 값이 결정되고, 이것이 테스트영상의 변환에 적용되어 결과적으로 두 영상이 정합 되게 된다. 제안된 최적화 평가함수는 표면거리 정보만을 사용하는 평가함수에 비해 보다 견고한 정합 정확도를 보였으며 또한 본 연구는 정합결과의 볼륨 가시화를 통해 효율적인 영상 분석 수단을 제공하고자 하였다.
In this study, we investigated the rotational characteristics which were comprised of directionality and linearity of target registration error (TRE) as a study in advance to enhance the accuracy of contour-based registration in neuronavigation. For the experiment, two rigid head phantoms that have different faces with specially designed target frame fixed inside of the phantoms were used. Three-dimensional coordinates of facial surface point cloud and target point of the phantoms were acquired using computed tomography (CT) and 3D scanner. Iterative closest point (ICP) method was used for registration of two different point cloud and the directionality and linearity of TRE in overall head were calculated by using 3D position of targets after registration. As a result, it was represented that TRE had consistent direction in overall head region and was increased in linear fashion as distance from facial surface, but did not show high linearity. These results indicated that it is possible for decrease TRE by controlling orientation of facial surface point cloud acquired from scanner, and the prediction of TRE from surface registration error can decrease the registration accuracy in lesion. In the further studies, we have to develop the contour-based registration method for improvement of accuracy by considering rotational characteristics of TRE.
This paper describes a variant of the extended Gaussian image based registration algorithm for point clouds with surface color information. The method correlates the distributions of surface normals for rotational alignment and grid occupancy for translational alignment with hue filters applied during the construction of surface normal histograms and occupancy grids. In this method, the size of the point cloud is reduced with a hue-based down sampling that is independent of the point sample density or local geometry. Experimental results show that use of the hue filters increases the registration speed and improves the registration accuracy. Coarse rigid transformations determined in this step enable fine alignment with dense, unfiltered point clouds or using Iterative Common Point (ICP) alignment techniques.
In image guided surgery, a patient registration process is a critical process for the successful operation, which is required to use pre-operative images such as CT and MRI during operation. Though several patient registration methods have been studied, we concentrate on one method that utilizes 3D surface measurement data in this paper. First, a hand-held 3D surface measurement device measures the surface of the patient, and secondly this data is matched with CT or MRI data using optimization algorithms. However, generally used ICP algorithm is very slow without a proper initial location and also suffers from local minimum problem. Usually, this problem is solved by manually providing the proper initial location before performing ICP. But, it has a disadvantage that an experience user has to perform the method and also takes a long time. In this paper, we propose a method that can accurately find the proper initial location automatically. The proposed method finds the proper initial location for ICP by converting 3D data to 2D curvature images and performing image matching. Curvature features are robust to the rotation, translation, and even some deformation. Also, the proposed method is faster than traditional methods because it performs 2D image matching instead of 3D point cloud matching.
본 논문에서는 PET-CT 뇌 영상융합을 위해 가우시안 가중치 거리지도를 이용한 표면기반 영상정합을 제안한다. 제안방법은 중요 세 단계로 표면 특징점 추출, 가우시안 가중치 거리지도 생성, 가중치기반 유사도 평가로 구성된다. 첫째, PET 영상과 CT 영상에서 삼차원 역 영역성장법을 이용하여 머리영역을 분할하고 머리 영역과 같이 분할된 잡음 영역을 영역성장법기반 레이블링을 이용한 영역 크기 비교를 통해 제거한 후 선명화 처리 필터를 적용하여 머리 표면 특징점을 추출한다. 둘째, CT 영상에서 추출한 표면 특징점에 가우시안 가중치 거리지도를 생성하여 큰 변위에서도 최적의 위치로 견고하게 수렴하도록 한다. 셋째, 가중치기반 상호상관관계는 PET 영상에서 추출한 표면 특징점과 대응되는 CT 영상의 가우시안 가중치 거리지도를 이용하여 최적 위치를 탐색한다. 본 논문에서는 제안방법의 정확성과 견고성 검사를 위해 인공데이타를 이용하고, 수행시간과 육안평가를 위해 임상데이타를 이용한다. 정확성 검사는 임의로 변환된 인공데이타에 제안방법을 적용한 후 추출된 최적화 변환벡터와의 오차를 제곱근평균제곱오차를 이용하여 평가한다. 견고성 검사는 큰 변위와 잡음을 가지는 인공데이타에서 가중치기반 상호상관관계가 최적의 위치에서 최대를 이루는지를 평가한다 실험 결과 제안한 표면기반 영상정합이 기존 표면기반 영상정합보다 정확하고 견고하게 수렴됨을 알 수 있다.
The skin movement artifacts are referred to as the relative motion of skin with respect to the motion of underlying bones. This is of great importance in joint biomechanics or internal kinematics of human body. This paper describes a novel experiment that measures the skin movement of a hand based on MR(magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images, and (3) registration of the 3D models. The MR images of the hand are captured by 3 different postures. And the surface makers which are attached to the skin are employed to trace the skin motion. After reconstruction of 3D models from the scanned MR images, the global registration is applied to the 3D models based on the particular bone shape of different postures. The results of registration are then used to trace the skin movement by measuring the positions of the surface markers.
본 논문에서는 특징점 기반 영상 모자익을 위해 보로노이거리를 이용하여 두 영상의 대응점을 신속히 검색하는 영상정합 방법을 제안한다. 먼저 SUSAN 코너 검출기에 의해 정차하고자 하는 영상의 특징점을 추출한 후, 기준 영상의 특징점을 기반으로 우선 순위 기반 보로노이 거리 알고리즘을 이용하여 특징점 사이의 거리 정보를 가지는 보로노이 평면을 생성한다. 모델 영상에서 특징점 위치의 분산값이 가장 큰 곳을 모델 영역으로 선택하여, 모델 영역이 포개지는 기준 영상의 보로노이 평면에서 보로노이 거리의 합이 최소화되는 대응 영역을 큐를 이용한 분할 검색 알고리즘에 의해 찾아낸다. 이 방법의 장점은 새로운 보로노이 거리 계산 알고리즘과 보로노이 평면의 검색범위를 매번 최대 1/4씩 줄여 주는 큐를 이용한 분할 검색 알고리즘을 이용함으로써 보다 신속히 대응점을 찾을 수 있다는 것이다.
Image mosaicking is a common and useful technique to visualize a global map by stitching a large number of local images obtained from visual surveys in underwater environments. In particular, visual inspection of underwater structures using underwater robots can be a potential application for image mosaicking. Feature-based pairwise image registration is a commonly employed process in most image mosaicking algorithms to estimate visual odometry information between compared images. However, visual features are not always uniformly distributed on the surface of underwater structures, and thus the performance of image registration can vary significantly, which results in unnecessary computations in image matching for poor-conditioned image pairs. This study proposes a pairwise registrability measure to select informative image pairs and to improve the overall computational efficiency of underwater image mosaicking algorithms. The validity and effectiveness of the image mosaicking algorithm considering the pairwise registrability are demonstrated using an experimental dataset obtained with a full-scale ship in a real sea environment.
This paper describes a novel experiment that measures the skin movement of a hand based on MR (magnetic resonance) images in conjunction with surface modeling techniques. The proposed approach consists of 3 phases: (1) MR scanning of a hand with surface makers, (2) 3D reconstruction from the MR images. and (3) registration of the 3D models. The results of registration are used to trace the skin movement with respect to underlying bone motions by measuring the positions of the surface markers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.