• Title/Summary/Keyword: surface uniformity

Search Result 680, Processing Time 0.032 seconds

Studies on the Electrochemical Dissolution for the Treatment of 10 g-Scale Zircaloy-4 Cladding Hull Wastes in LiCl-KCl Molten Salts (LiCl-KCl 용융염 내에서 10 g 규모의 Zircaloy-4 폐 피복관 처리를 위한 전기화학적 용해 연구)

  • Lee, You Lee;Lee, Chang Hwa;Jeon, Min Ku;Kang, Kweon Ho
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.273-280
    • /
    • 2012
  • The electrochemical behaviors of 10 g-scale fresh and oxidized Zircaloy-4 cladding hulls were examined in $500^{\circ}C$ LiCl-KCl molten salts to confirm the feasibility of the electrorefining process for the treatment of hull wastes. In the results of measuring the potential-current response using a stainless steel basket filled with oxidized Zircaloy-4 hull specimens, the oxidation peak of Zr appears to be at -0.7 to -0.8 V vs. Ag/AgCl, which is similar to that of fresh Zircaloy-4 hulls, while the oxidation current is found to be much smaller than that of fresh Zircaloy-4 hulls. These results are congruent with the outcome of current-time curves at -0.78 V and of measuring the change in the average weight and thickness after the electrochemical dissolution process. Although the oxide layer on the surface affects the uniformity and rate of dissolution by decreasing the conductivity of Zircaloy-4 hulls, electrochemical dissolution is considered to occur owing to the defect of the surface and phase properties of the Zr oxide layer.

Superconducting Thick Film by Lateral Field Assisted EPD (측면보조전계 인가 전기영동전착 초전도후막)

  • 전용우;소대화;조용준
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.679-685
    • /
    • 2004
  • Although the electrophoretic deposition method has the advantage of simple processing procedure, less fabrication facilities, and easier control for deposition thickness and wire length, providing economical and technical merits, it also has the disadvantages of cracking and porosity phenomena, requiring an improved processing method for higher particle density and constant particle orientation. we have developed an optimization method to increase the particle density and to unify its orientation, and have performed a study to overcome the cracking and porosity problems in the fabricated superconductor. In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternate voltage vertically has been developed for the first time and applied to the electrophoretic deposition process. The applied alternate electric field caused a force to be exerted on each YBCO particle and resulted in a rotation of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. We name this process as the shaky-aligned electrophoretic deposition method. For commercial utilization and efficiency, in this dissertation, alternating voltage of 60 Hz and 25 ∼ 120 V/cm was proposed to apply it as a subsidiary source for shaky-flow deposition so that the fabricated thin film showed uniform surface morphology with less voids and cracks and Tc,zero of 90 K and the critical current density of 3419 A/$cm^2$.

Synthesis of Uniformly Doped Ge Nanowires with Carbon Sheath

  • Kim, Tae-Heon;;Choe, Sun-Hyeong;Seo, Yeong-Min;Lee, Jong-Cheol;Hwang, Dong-Hun;Kim, Dae-Won;Choe, Yun-Jeong;Hwang, Seong-U;Hwang, Dong-Mok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.289-289
    • /
    • 2013
  • While there are plenty of studies on synthesizing semiconducting germanium nanowires (Ge NWs) by vapor-liquid-solid (VLS) process, it is difficult to inject dopants into them with uniform dopants distribution due to vapor-solid (VS) deposition. In particular, as precursors and dopants such as germane ($GeH_4$), phosphine ($PH_3$) or diborane ($B_2H_6$) incorporate through sidewall of nanowire, it is hard to obtain the structural and electrical uniformity of Ge NWs. Moreover, the drastic tapered structure of Ge NWs is observed when it is synthesized at high temperature over $400^{\circ}C$ because of excessive VS deposition. In 2006, Emanuel Tutuc et al. demonstrated Ge NW pn junction using p-type shell as depleted layer. However, it could not be prevented from undesirable VS deposition and it still kept the tapered structures of Ge NWs as a result. Herein, we adopt $C_2H_2$ gas in order to passivate Ge NWs with carbon sheath, which makes the entire Ge NWs uniform at even higher temperature over $450^{\circ}C$. We can also synthesize non-tapered and uniformly doped Ge NWs, restricting incorporation of excess germanium on the surface. The Ge NWs with carbon sheath are grown via VLS process on a $Si/SiO_2$ substrate coated 2 nm Au film. Thin Au film is thermally evaporated on a $Si/SiO_2$ substrate. The NW is grown flowing $GeH_4$, HCl, $C_2H_2$ and PH3 for n-type, $B_2H_6$ for p-type at a total pressure of 15 Torr and temperatures of $480{\sim}500^{\circ}C$. Scanning electron microscopy (SEM) reveals clear surface of the Ge NWs synthesized at $500^{\circ}C$. Raman spectroscopy peaked at about ~300 $cm^{-1}$ indicates it is comprised of single crystalline germanium in the core of Ge NWs and it is proved to be covered by thin amorphous carbon by two peaks of 1330 $cm^{-1}$ (D-band) and 1590 $cm^{-1}$ (G-band). Furthermore, the electrical performances of Ge NWs doped with boron and phosphorus are measured by field effect transistor (FET) and they shows typical curves of p-type and n-type FET. It is expected to have general potentials for development of logic devices and solar cells using p-type and n-type Ge NWs with carbon sheath.

  • PDF

Improvement of Polycarbonate Properties by Coating of TiO2 and SiO2 Thin Film (TiO2/SiO2 박막 코팅에 의한 폴리카보네이트 특성 개선)

  • Won, Dong So;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.1
    • /
    • pp.41-46
    • /
    • 2014
  • The property improvement of polycarbonate coated with a multilayer film composed of an inorganic $SiO_2$ film and a photocatalytic $TiO_2$ film was studied. The $SiO_2$ film as a binder had an excellent light transmission characteristic. After the treatment with atmospheric pressure plasma, the surface of $SiO_2$ film showed the hydrophilicity, which increased the film coating uniformity with a $TiO_2$-containing aqueous solution. When $TiO_2$ film was over 200 nm thick, the absorption effect of UV rays in the range of 180~400 nm suppressed the yellowing phenomena of polycarbonate substrate. The inorganic film improved the heat resistance of polycarbonate substrates. $TiO_2$ film in the outmost under the exposure of UV rays promotes the catalytic oxidation characteristics and yields the capability to the decomposition of organic contaminants, and also increases the self-cleaning properties due to the increase of hydrophilicity. Structural stability of the polycarbonate substrate coated with inorganic $TiO_2$ and $SiO_2$ film was shown. The role of $SiO_2$ film between $TiO_2$ and polycarbonate substrate suppressed the peeling of $TiO_2$ film by inhibiting the photocatalytic oxidation effect of $TiO_2$ film on the polycarbonate substrate.

A Comparative Study on Visibility Performance Between Pole Type Lightings and Low-Level Lightings (등주식 조명과 낮은 조명의 성능 비교에 관한 연구)

  • Park, Wonil;Lee, Sukki;Jin, Minsoo;Kim, Yongseok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.185-201
    • /
    • 2018
  • Road lighting is highly preferred as the major nighttime road safety countermeasures. When it comes to the pole-type road lighting, as it's installed at a certain height from the road surface, the driver is dazzled by the light source, interrupting the driver's visibility and furthermore, the light leaks to the area outside the road boundary, worsening the energy efficiency as well as generating the light pollution to the surrounding environment including the animals and plants. The study developed the low-level lighting systems, so it is possible to prevent the lights from being strayed, so there is no any side effects in terms of the sleep deprivation. The study compared the performance as the lightings between low-level lightings and conventional pole based lighting systems. As the results, the low-level lighting systems showed the higher performance in terms of average surface luminance, uniformity, glare compared to the conventional lighting systems.

Mechanical behavior and microstructural characterization of different zirconia polycrystals in different thicknesses

  • Arcila, Laura Viviana Calvache;Ramos, Nathalia de Carvalho;Campos, Tiago Moreira Bastos;Dapieve, Kiara Serafini;Valandro, Luiz Felipe;de Melo, Renata Marques;Bottino, Marco Antonio
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.6
    • /
    • pp.385-395
    • /
    • 2021
  • PURPOSE. To characterize the microstructure of three yttria partially stabilized zirconia ceramics and to compare their hardness, indentation fracture resistance (IFR), biaxial flexural strength (BFS), and fatigue flexural strength. MATERIALS AND METHODS. Disc-shaped specimens were obtained from 3Y-TZP (Vita YZ HT), 4Y-PSZ (Vita YZ ST) and 5Y-PSZ (Vita YZ XT), following the ISO 6872/2015 guidelines for BFS testing (final dimensions of 12 mm in diameter, 0.7 and 1.2 ± 0.1 mm in thicknesses). Energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses were performed, and mechanical properties were assessed by Vickers hardness, IFR, quasi-static BFS and fatigue tests. RESULTS. All ceramics showed similar chemical compositions, but mainly differed in the amount of yttria, which was higher as the amount of cubic phase in the diffractogram (5Y-PSZ > 4Y-PSZ > 3Y-TZP). The 4Y- and 5Y-PSZ specimens showed surface defects under SEM, while 3Y-TZP exhibited greater grain uniformity on the surface. 5Y-PSZ and 3Y-TZP presented the highest hardness values, while 3Y-TZP was higher than 4Y- and 5Y-PSZ with regard to the IFR. The 5Y-PSZ specimen (0.7 and 1.2 mm) showed the worst mechanical performance (fatigue BFS and cycles until failure), while 3Y-TZP and 4Y-PSZ presented statistically similar values, higher than 5Y-PSZ for both thicknesses (0.7 and 1.2 mm). Moreover, 3Y-TZP showed the highest (1.2 mm group) and the lowest (0.7 mm group) degradation percentage, and 5Y-PSZ had higher strength degradation than 4Y-PSZ group. CONCLUSION. Despite the microstructural differences, 4Y-PSZ and 3Y-TZP had similar fatigue behavior regardless of thickness. 5Y-PSZ had the lowest mechanical performance.

A Study on the Improvement of the Electrochemical Performance of Graphite Anode by Controlling Properties of the Coating Pitch (코팅 피치의 물성제어를 통한 흑연 음극재의 전기화학 성능 향상 연구)

  • Kim, Bo Ra;Kim, Ji Hong;Kang, Seok Chang;Im, Ji Sun
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.459-465
    • /
    • 2022
  • A pitch coating method was proposed for the purpose of improving the electrochemical properties of natural graphite. The synthesis conditions of pitch coating were optimized via measuring electrochemical properties of pitch-coated graphite anodes. As the synthesis temperature increased, the thermal stability was improved in addition to an increase in the softening point and residual carbon weight. However, the synthesis temperature of 430 ℃ resulted in the synthesis of a large amount of NI (NMP Insoluble) due to excessive condensation reaction. As the surface uniformity and coating thickness increased due to high thermal stability, the initial coulombic efficiency and rate capability of the pitch-coated graphite were improved. However, the graphite coated with the pitch containing excessive NI showed lower electrochemical properties than the uncoated graphite. NI had low dispersibility and formed spheres after heat treatment, so it formed the heterogeneous and thicker SEI layer. The optimum conditions for forming a uniform surface and an appropriate coating layer were investigated.

Cell-cultivable ultrasonic transducer integrated on glass-coverslip (세포 배양 가능한 커버슬립형 초음파 변환자)

  • Keunhyung Lee;Jinhyoung Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.412-421
    • /
    • 2023
  • Ultrasound brain stimulation is spot-lighted by its capability of inducing brain cell activation in a localized deep brain region and ultimately treating impaired brain function while the efficiency and directivity of neural modulation are highly dependent on types of stimulus waveforms. Therefore, to optimize the types of stimulation parameters, we propose a cell-cultivable ultrasonic transducer having a series stack of a spin-coated polymer piezoelectric element (Poly-vinylidene fluoride-trifluorethylene, PVDF-TrFE) and a parylene insulating layer enhancing output acoustic pressure on a glass-coverslip which is commonly used in culturing cells. Due to the uniformity and high accuracy of stimulus waveform, tens of neuronal cell responses located on the transducer surface can be recorded simultaneously with fluorescence microscopy. By averaging the cell response traces from tens of cells, small changes to the low intensity ultrasound stimulations can be identified. In addition, the reduction of stimulus distortions made by standing wave generated from reflections between the transducers and other strong reflectors can be achieved by placing acoustic absorbers. Through the proposed ultrasound transducer, we could successfully observe the calcium responses induced by low-intensity ultrasound stimulation of 6 MHz, 0.2 MPa in astrocytes cultured on the transducer surface.

Application of ZVI/TiO2 towards Clean-up of the Contaminated Soil with Polychlorinated Biphenyls (ZVI/TIO2를 이용한 폴리염화비페닐로 오염된 토양 정화)

  • Jae Wook Park;Yun Jin Jo;Dong-Keun Lee
    • Clean Technology
    • /
    • v.29 no.2
    • /
    • pp.118-125
    • /
    • 2023
  • Once a site is contaminated with polychlorinated biphenyls (PCBs), serious environmental and human health risks are inevitable. Therefore, innovative but economical in situ remediation technologies must be immediately applied to the contaminated site. Recently, nanoscale zero-valent iron (nano-ZVI) particles have successfully been applied for the dechlorination of various chlorinated organic compounds like TCE, PCE and DDT, and they are considered to be environmentally safe due to the high abundance of iron in the earth's crust. Nano-ZVIs are much more reactive than granular ones, but tend to agglomerate due to their high surface energy and magnetic properties. In order to prevent them from being agglomerated toward larger particles, TiO2 was used as a support to immobilize the nano-ZVI particles as much as possible. 10wt% ZVI/TiO2 was prepared by adding NaBH4 slowly into an FeSO4/TiO2 aqueous slurry. In spite of their non-uniformity in size, the nano-ZVI particles were quite successfully dispersed onto the exterior surface of a non-porous TiO2 powder. The ZVI/TiO2 was then employed to degrade Aroclor 1242, a kind of PCBs standard, in spiked soil, and its reactivity towards the degradation of Aroclor 1242 was investigated. The fabricated ZVI/TiO2 degraded Aroclor 1242 in soil quite effectively, but the creation of remaining dechlorinated compounds, possibly high molecular weight hydrocarbons, in the soil was unavoidable.

The Limitation of Air Carriers' Cargo and Baggage Liability in International Aviation Law: With Reference to the U.S. Courts' Decisions (국제항공법상 화물.수하물에 대한 운송인의 책임상한제도 - 미국의 판례 분석을 중심으로 -)

  • Moon, Joon-Jo
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.22 no.2
    • /
    • pp.109-133
    • /
    • 2007
  • The legal labyrinth through which we have just walked is one in which even a highly proficient lawyer could easily become lost. Warsaw Convention's original objective of uniformity of private international aviation liability law has been eroded as the world community ha attempted again to address perceived problems. Efforts to create simplicity and certainty of recovery actually may have created less of both. In any particular case, the issue of which international convention, intercarrier agreement or national law to apply will likely be inconsistent with other decisions. The law has evolved faster for some nations, and slower for others. Under the Warsaw Convention of 1929, strict liability is imposed on the air carrier for damage, loss, or destruction of cargo, luggage, or goods sustained either: (1) during carriage in air, which is comprised of the period during which cargo is 'in charge of the carrier (a) within an aerodrome, (b) on board the aircraft, or (c) in any place if the aircraft lands outside an aerodrome; or (2) as a result of delay. By 2007, 151 nations had ratified the original Warsaw Convention, 136 nations had ratified the Hague Protocol, 84 had ratified the Guadalajara Protocol, and 53 nations had ratified Montreal Protocol No.4, all of which have entered into force. In November 2003, the Montreal Convention of 1999 entered into force. Several airlines have embraced the Montreal Agreement or the IATA Intercarrier Agreements. Only seven nations had ratified the moribund Guatemala City Protocol. Meanwhile, the highly influential U.S. Second Circuit has rendered an opinion that no treaty on the subject was in force at all unless both affected nations had ratified the identical convention, leaving some cases to fall between the cracks into the arena of common law. Moreover, in the United States, a surface transportation movement prior or subsequent to the air movement may, depending upon the facts, be subject to Warsaw, or to common law. At present, International private air law regime can be described as a "situation of utter chaos" in which "even legal advisers and judges are confused." The net result of this barnacle-like layering of international and domestic rules, standards, agreements, and criteria in the elimination of legal simplicity and the substitution in its stead of complexity and commercial uncertainty, which manifestly can not inure to the efficient and economical flow of world trade. All this makes a strong case for universal ratification of the Montreal Convention, which will supersede the Warsaw Convention and its various reformulations. Now that the Montreal Convention has entered into force, the insurance community may press the airlines to embrace it, which in turn may encourage the world's governments to ratify it. Under the Montreal Convention, the common law defence is available to the carrier even when it was not the sole cause of the loss or damage, again making way for the application of comparative fault principle. Hopefully, the recent entry into force of the Montreal Convention of 1999 will re-establish the international legal uniformity the Warsaw Convention of 1929 sought to achieve, though far a transitional period at least, the courts of different nations will be applying different legal regimes.

  • PDF