• Title/Summary/Keyword: surface treatment agent

Search Result 400, Processing Time 0.031 seconds

Production of Polypyrrole Coated PVA Nanoweb Electroconductive Textiles for Application to ECG Electrode (심전도용 전극으로의 적용을 위한 폴리피롤 코팅 PVA 나노웹 전기전도성 텍스타일의 제조)

  • Kim, Jae-Hyun;Yang, Hyuk-Joo;Cho, Gil-Soo
    • Fashion & Textile Research Journal
    • /
    • v.21 no.3
    • /
    • pp.363-369
    • /
    • 2019
  • This study developed electroconductive textiles by coating polypyrrole to PET nonwoven-based Polyvinyl Alcohol (PVA) nanoweb made by electrospinning and applying the developed electrotextiles as ECG Electrodes. To find the optimum coating conditions for high electrical conductivity, the ratios of 2.6-Naphthalenedisulfonic acid with Disodium Salt (NDS) vs Ammonium Persulfate (APS) as an oxidant and a doping agent in the solution were changed from 3:7 to 7:3; the immersion time of the specimen in the solution was 1 hour. PVA nanowebs coated with polypyrrole under various conditions were filmed with FE-SEM. FT-IR analysis was also performed to examine the presence of polypyrrole nanoparticles in the PVA nanoweb. The electrical resistance of the treated specimens were measured with a Multimeter. Consequently, the PVA Nano Web was undamaged even after heat treatment that allowed for coating. Uniform polypyrrole nanoparticles then formed on the surface of the PVA nanoweb after coating. The measured electrical resistance was shown to be at least $12K{\Omega}/{\Box }$ from a maximum of $3,456K{\Omega}/{\Box }$. The proper amount of NDS content had a positive effect on the conductivity improvement of electroconductive textiles; in addition, the highest electrical conductivity was achieved with a ratio of 3:7 between NDS and APS.

Red ginseng oil promotes hair growth and protects skin against UVC radiation

  • Truong, Van-Long;Keum, Young-Sam;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.498-509
    • /
    • 2021
  • Background: A wide range of environmental factors, such as diseases, nutritional deficiencies, ageing, hormonal imbalances, stress, and ultraviolet (UV) radiation, may affect the structure and function of the skin that covers the entire surface of the human body. In this study, we investigated roles of red ginseng oil (RGO) in enhancing skin functions, including hair growth and skin protection, using mouse models. Methods: For hair growth experiment, shaved dorsal skins of C57BL/6 mice were topically applied with vehicle, RGO, RGO's major compounds, or minoxidil for consecutive 21 days and skin tissues were examined the hair growth promoting capacity. For skin protection experiment, SKH-1 hairless mice were topically applied with vehicle or RGO twice a day for three days prior to exposure to UVC radiation at 20 kJ/cm2. Skin tissues were collected to evaluate skin protective effects of RGO. Results: Topical application of RGO to C57BL/6 mice effectively promoted hair regeneration by inducing early telogen-to-anagen transition and significantly increasing the density and bulb diameter of hair follicles. Major compounds, including linoleic acids and β-sitosterol, contributed to RGO-promoted hair growth. Treatment with RGO as well as its major components upregulated expression of hair growth-related proteins. Furthermore, in SKH-1 hairless mice, RGO had a protective effect against UVC-induced skin damage by inhibiting inflammation and apoptosis, as well as inducing cytoprotective systems. Conclusion: These data suggest that RGO may be a potent agent for improving skin health and thereby preventing and/or treating hair loss and protecting skin against UV radiation.

Growth of Dendranthema zawadskii in Chloride-containing De-icing Salt Areas Upon Treatment With Soil Amendments (제설제 피해지에서 토양개량제 처리에 따른 구절초의 생육특성 비교)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.30 no.3
    • /
    • pp.235-243
    • /
    • 2021
  • This study was conducted to investigate the growth of Dendranthema zawadskii in damaged soils when they are treated with improvement agents. The treatments consisted of a control (unamended field soil) and the application of a loess ball of 1 cm to the field soil. According to the degree of damage the de-icing agent had caused, the soils were divided into 3 areas (based on the yellowing of Pinus densiflora for. multicaulis in soil surveys): H (high saline), M (medium saline), and L (low saline). A total of six treatments were performed: D. zawadskiia plant without soil amendment (H; high saline soil, M; medium saline soil, L; low saline soil), and a D. zawadskiia plant with loess ball on the soil surface (H.L; high saline soil with loess ball, M.L; medium saline soil with loess ball, L.L; low saline soil with loess ball). The results showed that D. zawadskiia growth went from highest to lowest in the order: M.L > L.L > M > L > H.L > H. Plant growth results showed that soils treated with soil amendments (loess ball) were better for D. zawadskii growth than untreated soils.

Effects of a Powder Formulation of Streptomyces cameroonensis on Growth and Resistance of Two Cocoa Hybrids from Cameroon against Phytophthora megakarya (Causal Agent of Black Pod Disease)

  • Aristide, Dzelamonyuy;Martial, Tene Tayo Paul;Ruth, Ngotcho Ngassam Esther;Grace, Lele Brenda;Ebenezer, Foka Tatiekam;Flore, Magni Pacha Tatiana;Thaddee, Boudjeko
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.160-169
    • /
    • 2022
  • In the present study we evaluated the efficacy of a bioformulation of Streptomyces cameroonensis for control of black pod disease in cocoa and enhancement of seedling growth. The formulation developed using talc powder and cassava starch as carriers showed high shelf-life of 1.07 × 106 CFU/g after six months storage at 4℃. The formulation was tested for inhibition of spore germination in Phytophthora megakarya and showed 100% inhibition at 10% (w/v) of formulation. To determine the efficacy of the formulation, we performed an in planta assay in the greenhouse on two hybrids of cocoa seedlings, the tolerant SNK413 × (♂) T79/467 and the susceptible UPA 134× (♂) SCA 12. Detached leaf assay showed a significant reduction in the disease severity index of about 67% for the tolerant hybrid and 55% for the susceptible hybrid compared to non-treated plants. A significant enhancement in stem length, leaf surface area and root weight was observed. Analysis of biochemical markers of defense showed a significant increase in total polyphenol, flavonoid, and total protein contents. There was also significant upregulation of PR-proteins such as chitinases, peroxidases and β-1, 3-glucanases following treatment of both tolerant and susceptible hybrids, though with a higher level of synthesis in the tolerant hybrids. A significant increase was also observed in polyphenol oxidase activities in plants treated with the formulation. This work demonstrated the stability and effectiveness of the S. cameroonensis powder formulation in suppressing black pod disease in cocoa and subsequently enhancing the growth of seedlings.

Hovenia Monofloral Honey can Attenuate Enterococcus faecalis Mediated Biofilm Formation and Inflammation

  • You, Ri;Kwon, Oh Yun;Woo, Hyun Joo;Lee, Seung Ho
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.84-97
    • /
    • 2022
  • We evaluated the anti-biofilm formation and anti-inflammatory activity of Hovenia monofloral honey (HMH) against Enterococcus faecalis. Co-culture of HMH with E. faecalis attenuated the biofilm formation of E. faecalis on a polystyrene surface. In addition, HMH effectively eradicated the established E. faecalis biofilm. HMH significantly attenuated E. faecalis growth but did not affect the production of extracellular polymeric substances on E. faecalis, indicating that reduction of E. faecalis biofilm is a result of HMH-mediated killing of E. faecalis. Furthermore, we found that HMH can effectively attenuate E. faecalis-induced expression of a proinflammatory interleukin-8 (IL- 8) in HT-29 cells. Interestingly, treatment of HMH significantly attenuated the E. faecalis-mediated expression of Toll-like receptor-2 (TLR-2) and its adaptor molecules, myeloid differentiation primary response 88 (MyD88), in HT-29 cells. In addition, E. faecalis-induced mitogen-activated protein kinases (MAPKs) phosphorylation was significantly attenuated by HMH administration. Furthermore, HMH-mediated antiinflammatory efficacy (0.2 mg/mL of HMHs) had an equal extent of inhibitory efficacy as 5 μM of MyD88 inhibitor to attenuate E. faecalis-mediated IL-8 expression in HT-29 cells. These results suggest that HMH could effectively inhibit E. faecalis-mediated gastrointestinal inflammation through regulating the TLR-2/MyD88/MAPKs signaling pathways. Collectively, our data suggest that HMH could be developed as a potential natural agent to control E. faecalis-mediated biofilm formation and inflammation.

Effect of neem leaves and stock density of earthworm (Eisenia fetida) on quality of rice straw vermicompost

  • Sapna Yadav;Parveen Kumar
    • Advances in environmental research
    • /
    • v.12 no.1
    • /
    • pp.51-64
    • /
    • 2023
  • The sustainable management of rice straw is essential for protection of human health and environment. This study assesses the impact of stock density of earthworm (Eisenia fetida) and Neem leaves (Azadirachta indica) on the quality of the final vermicompost. The vermicompost is produced using different combinations of rice straw, Neem leaves, and cow dung (bulking agent) by varying stock density of earthworms. The vermicomposting experiments are performed in plastic containers (32 cm × 28 cm × 28 cm) in open for 90 days under laboratory conditions. The stock density of the earthworm is found to be an important factor to influence nutritional quality of the final vermicompost. There is observed significant improvement in the total nitrogen (91.8%), phosphate (73.4%), potassium (38.8%), and calcium (59.05%) content of the vermicompost produced with the highest stock density of the earthworms. All the treatments showed decrease in TOC and C:N content after 90 days of vermicomposting. The treatment with Neem leaves showed maximum growth of earthworms (2.65 fold). Neem leaves brought positive changes in the quality of final vermicompost by enhancing the growth and reproduction of the earthworms. The calcium content increased by 39% in the final vermicompost with the addition of Neem leaves at the same stock density of the earthworms. The stock density of the earthworms and Neem leaves are found to significantly improve quality of the final vermicompost as compared with the compost (control). The surface morphology in SEM images showed high degree of fragmentation in the vermicompost as compared with the compost. The combined action of microbes and earthworms resulted in high degree of disintegration in the vermicompost.

A Study on Degradation and Recovery Mechanisms of Composites under the Moisture Environment (복합재료의 수분에 의한 열화 및 회복 메커니즘에 관한 연구)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2008
  • Decrease of strength in composite material is generally caused by water absorption. It makes fracture of material, and loss of money or human lives. The objective of this study is to investigate the causes of decrease in strength by water absorption. Mechanism of water absorption was supposed as three steps. This mechanism is consisted of absorption into resin, absorption between resin and surface treatment agent, and delamination between fiber and resin. Conditions of test were supplied differently; kinds of fiber and resin, immersion time etc. Both of reversible reaction and irreversible reaction occurred simultaneously. Most of decrease in strength was finished at 2.5% water absorption, and the strength was recovered. At 4% water absorption, most of decrease was caused by irreversible reaction, therefore, there was a tendency not to be recovered in strength.

CONFOCAL LASER SCANNING MICROSCOPIC MORPHOLOGY OF DENTIN-RESIN INTERFACE AND ITS RELATIONSHIP WITH SHEAR BOND STRENGTH (상아질-레진 계면의 공초점 현미경적 형태 및 전단결합강도와의 관계)

  • Choi, Nak-Won;Cho, Byeong-Hoon;Son, Ho-Hyun
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.310-321
    • /
    • 1999
  • In this in vitro study, confocal laser scanning microscopic morphology of dentin-resin interface and its relationship to shear bond strength were investigated after the exposed dentin surfaces were treated with 3 different kinds of dentin adhesive systems[three-step; Scotchbond Multi-Purpose Plus(SMPP), self-priming bonding resin; Single Bond(SB), self-etching primer; Clearfil Liner Bond 2(LB2)]. 52 extracted human molar teeth without caries and/or restorations. The experimental teeth were randomly divided into three groups of seventeen teeth each. In five teeth of each group, class V cavities(depth: 1.5mm) with 900 cavosurface angles were prepared at the cementoenamel junction on buccal and lingual surfaces. Bonding resins of each dentin adhesive system were mixed with rhodamine B. Primer of SMPP was mixed with fluorescein. In group 1. the exposed dentin was conditioned with etchant, applied with above primer and bonding resin of SMPP. In group 2, with etchant and self-priming bonding agent of SB. In group 3, with self-etching primer and bonding agent of LB2. After treatment with dentin adhesive systems, composite resin were applied and photocured. The experimental teeth were cut longitudinally through the center line of restoration and grounded so that about $90{\mu}m$-thick wafers of buccolingually orientated dentin were obtained. And, $70{\sim}80{\mu}m$-thick wafers sectioned horizontally, thus presenting a dentinal tubules at 900 to the cut surface of a remaining tooth, were obtained. Primer of SMPP mixed with rhodamine B was applied to these wafers. Confocal laser scanning microscopic investigations of these wafers were done within of 24 hours after treatment. To measure shear bond strength, the remaining twelve teeth of each group were grounded horizontally below the dentinoenamel junction, so that no enamel remained. After applying dentin adhesive systems on the dentin surface, composite was applied in the shape of cylinder. The cylinder was 5mm in diameter, and 2mm in thickness. Shear bond strength was measured using Instron with a cross-head speed of 0.5mm/min. It was concluded as follows ; 1. Hybrid layer of SMPP(mean: $4.56{\mu}m$) was thicker than that of any other groups. This value was not statistically significant thicker than that of SB(mean: $3.41{\mu}m$, p>0.05), and significant thicker than that of LB2(mean: $1.56{\mu}m$, p<0.05). There was a statistical difference between SB and LB2(p<0.05). 2. Although there were variations in the length of resin tag even in a sample, and in a group, most samples in SMPP and SB showed resin tags extending above $20{\mu}m$. But samples in LB2 showed resin tags of $10{\mu}m$ at best. 3. Besides primer's infiltration into demineralized peritubular dentin and dentinal tubules, fluorophore of primer was detected in the lateral branches of dentinal tubules. 4. All groups demonstrated statistically significant differences from one another(p<0.05), with shear bond strengths given in descending order as follows: SMPP(18.3MPa), SB(16.0MPa) and LB2(12.4MPa). 5. LB2 having thinnest hybrid layer($1.56{\mu}m$) showed the lowest shear bond strength(12.4MPa).

  • PDF

MARGINAL MICROLEAKAGE AND SHEAR BOND STRENGTH OF COMPOSITE RESIN ACCORDING TO TREATMENT METHODS OF ARTIFICIAL SALIVA-CONTAMINATED SURFACE AFTER PRIMING (접착강화제 도포후 인공타액에 오염된 표면의 처리방법에 따른 복합레진의 번연누출과 전단결합강도)

  • Cho, Young-Gon;Ko, Kee-Jong;Lee, Suk-Jong
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2000
  • During bonding procedure of composite resin, the prepared cavity can be contaminated by saliva. In this study, marginal microleakage and shear bond strength of a composite resin to primed enamel and dentin treated with artificial saliva(Taliva$^{(R)}$) were evaluated. For the marginal microleakage test, Class V cavities were prepared in the buccal surfaces of fifty molars. The samples were randomly assigned into 5 groups with 10 samples in each group. Control group was applied with a bonding system (Scotchbond$^{TM}$ Multi-Purpose plus) according to manufacture's directions without saliva contamination. Experimental groups were divided into 4 groups and contaminated with artificial saliva for 30 seconds after priming: Experimental 1 group ; artificial saliva was dried with compressed air only, Experimental 2 group ; artificial saliva was rinsed and dried. Experimental 3 group ; cavities were etched with 35% phosphoric acid for 15 seconds after rinsing and drying artificial saliva. Experimental 4 group ; cavities were etched with 35% phosphoric acid for 15 seconds and primer was reapplied after rinsing and drying artificial saliva. All the cavities were applied a bonding agent and filled with a composite resin (Z-100$^{TM}$). Specimens were immersed in 0.5% basic fuschin dye for 24 hours and embedded in transparent acrylic resin and sectioned buccolingually with diamond wheel saw. Four sections were obtained from one specimen. Degree of marginal leakage was scored under stereomicroscope and their scores were averaged from four sections. The data were analyzed by Kruscal-Wallis test and Fisher's LSD. For the shear bond strength test, the buccal or occlusal surfaces of one hundred molar teeth were ground to expose enamel(n=50) or dentin(n=50) using diamond wheel saw and its surface was smoothed with Lapping and Polishing Machine(South Bay Technology Co., U.S.A.). Samples were divided into 5 groups. Treatment of saliva-contaminated enamel and dentin surfaces was same as the marginal microleakage test and composite resin was bonded via a gelatin capsule. All specimens were stored in distilled water for 48 hours. The shear bond strengths were measured by universal testing machine (AGS-1000 4D, Shimaduzu Co., Japan) with a crosshead speed of 5 mm/minute. Failure mode of fracture sites was examined under stereomicroscope. The data were analyzed by ANOVA and Tukey's studentized range test. The results of this study were as follows : 1. Enamel marginal microleakage showed no significant difference among groups. 2. Dentinal marginal microleakages of control, experimental 2 and 4 groups were lower than those of experimental 1 and 3 groups (p<0.05). 3. The shear bond strength to enamel was the highest value in control group (20.03${\pm}$4.47MPa) and the lowest value in experimental 1 group (13.28${\pm}$6.52MPa). There were significant differences between experimental 1 group and other groups (p<0.05). 4. The shear bond strength to dentin was higher in control group (17.87${\pm}$4.02MPa) and experimental 4 group (16.38${\pm}$3.23MPa) than in other groups, its value was low in experimental 1 group (3.95${\pm}$2.51 MPa) and experimental 2 group (6.72${\pm}$2.26MPa)(p<0.05). 5. Failure mode of fractured site on the enamel showed mostly adhesive failures in experimental 1 and 3 groups. 6. Failure mode of fractured site on the dentin did not show adhesive failures in control group, but showed mostly adhesive failure in experimental groups. As a summary of above results, if the primed tooth surface was contaminated with artificial saliva, primer should be reapplied after re-etching it.

  • PDF

Screening of Biogenic Amine Non-Producing Yeast and Optimization of Culture Conditions Using Statistical Method for Manufacturing Black Raspberry Wine (복분자 와인 제조를 위한 바이오제닉 아민 비생성 효모의 선별 및 통계학적 기법을 이용한 배양조건 최적화)

  • Yang, Hee-Jong;Jeong, Su-Ji;Jeong, Seong-Yeop;Heo, Ju-Hee;Jeong, Do-Youn
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.4
    • /
    • pp.592-601
    • /
    • 2015
  • Rubus coreanus is known as Korean black raspberry, native to Korea, Japan, and China. Preliminary studies evaluating their potential for cancer treatment in mammalian test systems are ongoing. In recent years, interest has been renewed due to their high levels of anthocyanins. Anthocyanins in black raspberry are important due to their potential health benefits as dietary antioxidant, anti-inflammatory compound, and as a chemopreventive agent. In the present study, Saccharomyces cerevisiae BA29 was isolated from black raspberry fruit and fruit juice as a biogenic amine non-producing strain for manufacturing of black raspberry wine, after which we investigated its characteristics: biogenic amine-producing ability, cell growth ability, alcohol-fermentation ability, and resistance to alcohol, glucose, and sulfur dioxide. Based on preliminary experiments, we optimized culture medium compositions for improving dried cell weight of S. cerevisiae BA29 by response surface methodology (RSM) as a statistical method. Design for RSM used a central composite design, and molasses with the industrial applicability was used as a carbon source. Through statistical analysis, we obtained optimum values as follows: molasses 200 g/L, peptone 30 g/L, and yeast extract 40 g/L. For the model verification, we confirmed about 3-fold improvement of dried cell weight from 6.39 to 20.9167 g/L compared to basal yeast peptone dextrose medium. Finally, we manufactured black raspberry wine using S. cerevisiae BA29 and produced alcohol of 20.33%. In conclusion, S. cerevisiae isolated from black raspberry fruit and juices has a great potential in the fermentation of black raspberry wine.