• Title/Summary/Keyword: surface texturization

Search Result 13, Processing Time 0.031 seconds

Characteristics of Double Texturization by Laser and Reactive Ion Etching for Crystalline Silicon Solar Cell (레이저를 이용한 결정질 실리콘 태양전지의 Double Texturing 제조 및 특성)

  • Kwon, Jun-Young;Han, Kyu-Min;Choi, Sung-Jin;Song, Hee-Eun;Yoo, Jin-Soo;Yoo, Kwon-Jong;Kim, Nam-Soo
    • Korean Journal of Materials Research
    • /
    • v.20 no.12
    • /
    • pp.649-653
    • /
    • 2010
  • In this paper, double texturization of multi crystalline silicon solar cells was studied with laser and reactive ion etching (RIE). In the case of multi crystalline silicon wafers, chemical etching has problems in producing a uniform surface texture. Thus various etching methods such as laser and dry texturization have been studied for multi crystalline silicon wafers. In this study, laser texturization with an Nd:$YVO_4$ green laser was performed first to get the proper hole spacing and $300{\mu}m$ was found to be the most proper value. Laser texturization on crystalline silicon wafers was followed by damage removal in acid solution and RIE to achieve double texturization. This study showed that double texturization on multi crystalline silicon wafers with laser firing and RIE resulted in lower reflectance, higher quantum yield and better efficiency than that process without RIE. However, RIE formed sharp structures on the silicon wafer surfaces, which resulted in 0.8% decrease of fill factor at solar cell characterization. While chemical etching makes it difficult to obtain a uniform surface texture for multi crystalline silicon solar cells, the process of double texturization with laser and RIE yields a uniform surface structure, diminished reflectance, and improved efficiency. This finding lays the foundation for the study of low-cost, high efficiency multi crystalline silicon solar cells.

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

A Study of the Thermal Characteristics of a Photovoltaic Device with Surface Texturization (표면 Texturization을 가진 Photovoltaic Device 내부의 열 분포 특성에 관한 연구)

  • Jung, Ji-Chul;Moon, Kyoung-Sook;Koo, Sang-Mo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.7
    • /
    • pp.509-512
    • /
    • 2010
  • The thermal distribution of 2D and 3D p-n photovoltaic diode structures with and without surface texturing has been studied. By analysis of the numerical simulation results of the I-V characteristics and lattice temperature distributions the effect of different texturing structures on the characteristics of silicon p-n photovoltaic devices has been studied systematically. The efficiency of the device having surface texturing shows more than ~2% enhancement compared to the reference devices which did not have texturing. In addition, the effect of the density of the texturing groove has been studied and it has been confirmed that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

The effect of surface texturization on the thermal and electric characteristics of photovoltaic devices (표면 texturizaton에 따른 photovoltaic device의 열적 전기적 특성)

  • Jung, Ji-Chul;Jung, Byung-Eon;Lee, Jung-Ho;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.133-133
    • /
    • 2010
  • We studied the thermal and electric effect of 2D and 3D p-n photovoltaic diode structures with and without surface texturing. By analyzing the numerical simulation results of I-V characteristics and lattice temperature distributions, we systematically studied the effect of different texturing structures and different doping concentration on the characteristics of the silicon p-n photovoltaic devices. The, efficiency of the device with the surface texturing shows more than ~ 2% enhancement compared to the reference devices without texturing. The tendency of the efficiency of doping concentration has been studied with boron doping of $10^{14}{\sim}10^{17}cm^{-3}$ and phosphorus doping of $10^{15}cm^{-3}$. In addition to that, the study of changing phosphorus doping of $10^{15}{\sim}10^{18}cm^{-3}$ with boron doping of $10^{14}cm^{-3}$ has been examined. It has been shown that the texturing structure not only improves the light trapping but also plays an important role in the heat radiation.

  • PDF

The Texturization Properties of Textured Extrudate made by a Mixture of Rice Flour and Isolated Soybean Protein (쌀과 분리대두단백 혼합에 따른 조직화 특성)

  • Han, Ouk;Park, Yong-Ho;Lee, Sang-Hyo;Lee, Hyun-Yu;Min, Byong-Lyoung
    • Korean Journal of Food Science and Technology
    • /
    • v.21 no.6
    • /
    • pp.780-787
    • /
    • 1989
  • The texturization properties of extrudate from isolated soybean protein and rice flour by extrusion cooking were investigated. The addition of up to 30% rice flur to isolated soy proetin could give more tenderness to the texturized extrudate. As the rice flour content increased, die temperature, nitrogen solubility index, and integrity index were decreased slightly with lower chewiness and gumminess. The water content of final extrudate was increased as the addition of rice flour increased, while density was maintained without variation, and rehydration ratio was decreased. The distribution of pressure profile during extrusion were in the range of $15-100kg/cm^3$. As the addition of rice flour increased, scanning electron micrographs demonstrated the gelatinized surface structure of rice starch and the increased air cell size of the testurized extrudate.

  • PDF

Low reflectance of sub-texturing for monocrystalline Si solar cell

  • Chang, Hyo-Sik;Jung, Hyun-Chul;Kim, Hyoung-Tae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.249-249
    • /
    • 2010
  • We investigated novel surface treatment and its impact on silicon photovoltaic cells. Using 2-step etching methods, we have changed the nanostructure on pyramid surface so that less light is reflected. This work proposes an improved texturing technique of mono crystalline silicon surface for solar cells with sub-nanotexturing process. The nanotextured silicon surface exhibits a lower average reflectivity (~4%) in the wavelength range of 300-1100nm without antireflection coating layer. It is worth mentioning that the surface of pyramids may also affect the surface reflectance and carrier lifetime. In one word, we believe nanotextruing is a promising guide for texturization of monocrystalline silicon surface.

  • PDF

Investigation of Wet Chemical Etching for Surface Texturing of Multi-crystalline Silicon Wafers (다결정 실리콘 웨이퍼의 표면 텍스쳐링을 위한 습식 화학 식각에 대한 연구)

  • Kim, Bum-Ho;Lee, Hyun-Woo;Lee, Eun-Joo;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.19-20
    • /
    • 2006
  • Two methods that can reduce reflectance in solar cells are surface texturing and anti-reflection coating. Wet chemical etching is a typical method that surface texturing of multi-crystalline silicon. Wet chemical etching methods are the acid texturization of saw damage on the surface of multi-crystalline silicon or double-step chemical etching after KOH saw damage removal too. These methods of surface texturing are realized by chemical etching in acid solutions HF-$HNO_3$-$H_2O$. In this solutions we can reduce reflectance spectra by simple process etching of multi-crystalline silicon surface. We have obtained reflectance of 27.19% m 400~1100nm from acidic chemical etching after KOH saw damage removal. This result is about 7% less than just saw damage removal substrate. The surface morphology observed by microscope and scanning electron microscopy (SEM).

  • PDF

The Study of N-type Crystalline Silicon Solar Cells by PC1D

  • Yi, Junsin;Jung, Junhee;Lau, Meng How
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.287.2-287.2
    • /
    • 2014
  • PV (photovoltaic) has becoming an important industry to invest due to its high robustness and require very little maintenance which goes a long time. Solar cell fabrication involves a few critical processes such as doping to make the N-type and P-type silicon, contact metallization, surface texturization, and anti-reflection coatings. Anti-reflection coating is a kind of surface passivation which ensures the stability, and efficiency of the solar cell. Thus, I will focus on the changes happen to the solar cell due to the reflectance and anti-reflection coating by PC1D. By using the PC1D (solar cell simulation program), I would analysis the effect of reflectance on the N-type cell. At last I will conclude the result regarding what I learned throughout this experiment.

  • PDF

Multi-crystalline Silicon Solar Cell with Reactive Ion Etching Texturization

  • Park, Seok Gi;Kang, Min Gu;Lee, Jeong In;Song, Hee-eun;Chang, Hyo Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.419-419
    • /
    • 2016
  • High efficiency silicon solar cell requires the textured front surface to reduce reflectance and to improve the light trapping. In case of mono-crystalline silicon solar cell, wet etching with alkaline solution is widespread. However, the alkali texturing methods are ineffective in case of multi-crystalline silicon wafer due to grain boundary of random crystallographic orientation. The acid texturing method is generally used in multi-crystalline silicon wafer to reduce the surface reflectance. However the acid textured solar cell gives low short-circuit current due to high reflectivity while it improves the open-circuit voltage. To reduce the reflectivity of multi-crystalline silicon wafer, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE experimental condition with change of RF power (100W, 150W, 200W, 250W, 300W). During experiment, the gas ratio of SF6 and O2 was fixed as 30:10.

  • PDF

Two Step Texturing Using RIE and Wet Etching for Crystalline Silicon Solar Cell (알카리 식각과 반응성 이온 식각을 이용한 결정질 실리콘 2단계 표면 조직화 공정)

  • Yeo, In Hwan;Park, Ju Eok;Kim, Jun Hee;Cho, Hae Sung;Lim, Donggun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.2
    • /
    • pp.140-143
    • /
    • 2013
  • Lowering surface reflectance of silicon wafer by texturization is one of the most important processes to improve the efficiency of silicon solar cells. Generally, the texturing of crystalline silicon was carried out using alkaline solution. The average reflectance of this method was 11% at the wavelength between 400 and 1,000 nm. In this study, the wafers were first texturing by NaOH solution at $80^{\circ}C$ for 35 min. Then the wafers were texturing by $SF_6$ and $O_2$ plasma in RIE (Reactive Ion Etching). The average reflectance of two step texturing was reduced to below 5% at the wavelength between 400 and 1,000 nm.