• Title/Summary/Keyword: surface textured

Search Result 297, Processing Time 0.022 seconds

Fabrication of the Ce$O_{2}$ thin film by MOCVD process (MOCVD 공정을 이용한 CeO2 박막 제조)

  • 김호진;주진호;전병혁;정충환;박해웅;김찬중
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.02a
    • /
    • pp.133-136
    • /
    • 2003
  • The CeO$_2$ thin films were deposited on the biaxially textured Ni substrates by MOCVD process. The (200) oriented CeO$_2$ films were formed at the deposition temperature(Td) of 500~52$0^{\circ}C$, the oxygen partial pressure(PO2) of 0.90~3.33 torr and the deposition time(t) of 3~25 min. The surface roughness and gain size rapidly increased at Td $\geq$ 52$0^{\circ}C$ due to the grain growth. The surface roughness also increased as the deposition time increased. The optimized deposition conditions of the CeO$_2$ films for the YBCO coated conductor were Td= 500~51$0^{\circ}C$, PO2= 2.30 torr and t= 10~12 min.

  • PDF

Moist Corrosion and Surface Protection of YBCO HTS

  • Lim, Byong-Jae;Soh, Dea-Wha;Fan, Zhanguo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.256-259
    • /
    • 2002
  • The critical currents of sintered $YBa_{2}Cu_{3}O_{6.5+\delta}$ were measured as the variables with the corrosive time in the humid air. The corrosive process was studied by means of the current changes. Ag coating on the textured YBCO and polytetrafluoroethylene (PTFE) coating on the sintered YBCO were prepared. The critical current densities of different YBCO samples with and without coatings were compared. Both Ag coating and PTFE coating can well protect YBCO from moisture and $CO_{2}$.

  • PDF

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 3 - Effect of Number of Dimples (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제3보 - 딤플 수의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.302-307
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied recently to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, numerical analysis is carried out to investigate the effect of number of dimples on the lubrication characteristics of parallel thrust bearing using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure distributions of present analysis are physically consistent than those obtained from numerical analysis of Reynolds equation. The overall lubrication characteristics are highly affected by number of dimples and their locations. The results can be use in design of optimum dimple characteristics to improve thrust bearing performance and further researches are required.

Lubrication Characteristics of Laser Textured Parallel Thrust Bearing : Part 4 - Effect of Dimple Shape (Laser Texturing한 평행 스러스트 베어링의 윤활특성 : 제4보 - 딤플 형상의 영향)

  • Park, Tae-Jo
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.338-343
    • /
    • 2011
  • Laser surface texturing (LST) methods are widely applied now to reduce friction and improve reliability of machine components such as thrust bearings, mechanical face seals and piston rings, etc. In this paper, the effect of dimple shapes on the lubrication characteristics of parallel thrust bearing are studied using a commercial computational fluid dynamics (CFD) code, FLUENT. Pressure and streamline distributions, variations of supporting load, leakage flow rate and friction force, are compared for three different dimple sectional shapes such as circle, pyramid and rectangle type. The lubrication characteristics are highly affected by dimple shapes and number of dimples. The pyramid type dimple shape can support the highest load while the rectangle type is the best in friction reduction.

Two Step Surface Texturing of Silicon Wafers using Micro Blaster (마이크로 블라스터를 이용한 실리콘 웨이퍼의 2단계 표면 텍스쳐링)

  • Cho, Chan-Seob;Jung, Sang-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.5-9
    • /
    • 2010
  • Recently, the important issues of solar cell are low cost and high efficiency. Making low cost and high efficiency solar cell, there are many effects to development of inexpensive wafer, simplify process and improve optical, electrical properties. In this the study, the 2 step texturing method using micro blaster was developed to decrease reflection of incident lights. Air bridge electrode structure is suggested to expand the effective surface area and decrease the series resistance of finger electrode. The effects of 1 step texturing and 2 step texturing by micro blaster are compared. Reflectance of 1 step and 2 step texturing are measured 28.7% and 25.5%, respectively. The reflectance of 2 step texturing sample is lower about 3.2% than 1 step textured sample.

Effect of the Texture Shape Aspect Ratio on Friction Reduction in a Hydrodynamic Lubrication Regime (유체윤활영역에서 패턴의 모양비율에 따른 마찰 저감효과)

  • Lee, Daehun;Park, Sang-Shin;Ko, Tae Jo;Shim, Jaesool
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.63-68
    • /
    • 2017
  • Friction occurs when surfaces that are in contact move relatively between solid surfaces, fluid layers, and materials slide against one another. This friction force causes wear on the contact surface, generates unwanted heat and leads to performance degradation. Thus, much research has been performed to avoid friction reduction. Among these studies, a textured surface that has micro patterns on the surface has drawn attention for its ability to reduce friction. A mathematical model is developed in this study to examine friction reduction due to the texture of a surface. Numerical simulations are carried out with respect to various factors such as the shape aspect ratio and texture depth of a diamond-shaped texture in the hydrodynamic lubrication regime. As a result, a shape aspect ratio of 1 is best for friction reduction.

Analyzing Friction Coefficient and Wettability of Micro-Dimple Fabricated Using Elliptical Vibration Texturing Method (이중 주파수 타원형 진동 궤적법 기반 마이크로 딤플의 마찰계수 및 습윤성 분석)

  • Park, Gun Chul;Ko, Tae Jo;Kurniawan, Rendi;Ali, Saood
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.38-44
    • /
    • 2020
  • Surface texturing of micro-dimples has been used in many manufacturing industries to reduce friction between two sliding contacted surfaces. Surface texturing decreases the frictional force owing to minimizing of the sliding contact area. In this paper, micro-dimples have been fabricated on an Al6061-T6 surface using a two-frequency elliptical vibration texturing (TFEVT) method. A high-frequency of 18 kHz and low-frequency of 250 Hz were applied to an elliptically-vibrated tool holder. The Stribeck curve was plotted to analyze the friction coefficient trends. Furthermore, the representative wetting index, such as the water contact angle (WCA), was measured by considering the friction coefficient. WCA is associated with micro-dimple density and associated parameters. Consequently, the dimpled surfaces with a low friction coefficient exhibited a relatively high WCA in the feed direction. According to the Stribeck curve, the dimpled surfaces demonstrate superior friction performance for mixed-film lubrication compared to the non-textured surface.

Effect of Surface Pyramids Size on Mono Silicon Solar Cell Performance

  • Kim, Hyeon-Ho;Kim, Su-Min;Park, Seong-Eun;Kim, Seong-Tak;Gang, Byeong-Jun;Tak, Seong-Ju;Kim, Dong-Hwan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.100.2-100.2
    • /
    • 2012
  • Surface texturing of crystalline silicon is carried out in alkaline solutions for anisotropic etching that leads to random pyramids of about $10{\mu}m$ in size. Recently textured pyramids size gradually reduced using new solution. In this paper, we investigated that texture pyramids size had an impact on emitter property and front electrode (Ag) contact. To make small (${\sim}3{\mu}m$) and large (${\sim}10{\mu}m$) pyramids size, texturing times control and one side texturing using a silicon nitride film were carried out. Then formation and quality of POCl3-diffused n+ emitter in furnace compare with small and large pyramids by using SEM images, simulation (SILVACO, Athena module) and emitter saturation current density (J0e). After metallization, Ag contact resistance was measured by transfer length method (TLM) pattern. And surface distributions of Ag crystallites were observed by SEM images. Also, performance of cell which is fabricated by screen-printed solar cells is compared by light I-V.

  • PDF

Surface Analysis and Conversion Efficiency of Multi-crystalline Silicon Solar Cell by Wet Chemical Etching (습식 화학 식각에 의한 다결정 실리콘 웨이퍼의 표면 분석 및 효율 변화)

  • Park, Seok-Gi;Do, Kyeom-Seon;Song, Hee-Eun;Kang, Gi-Hwan;Ahn, Hyung-Keun;Han, Deuk-Young
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.111-115
    • /
    • 2011
  • Surface Texturing is an essential process for high efficiency in multi-crystalline silicon solar cell. In order to reduce the reflectivity, there are two major methods; proper surface texturing and anti-reflection coating. For texturization, wet chemical etching is a typical method for multi-crystalline silicon. The chemical solution for wet etching consists of HF, $NHO_3$, DI and $CH_3COOH$. We carried out texturization by the change of etching time like 15sec, 30sec, 45sec, 60sec and measured the reflectivity of textured wafers. As making the silicon solar cells, we obtained the conversion efficiency and relationship between texturing condition and solar cell characteristics. The reflectivity from 300nm to 1200nm was the lowest with 15 sec texturing time and 60 sec texturing time showed almost same reflectivity as bare one. The 45 sec texturing time showed the highest conversion efficiency.

  • PDF

Influence of KOH Solution on the Passivation of Al2O3 Grown by Atomic Layer Depostion on Silicon Solar Cell

  • Jo, Yeong-Jun;Jang, Hyo-Sik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.299.2-299.2
    • /
    • 2013
  • We investigated the potassium remaining on a crystalline silicon solar cell after potassium hydroxide (KOH) etching and its effect on the lifetime of the solar cell. KOH etching is generally used to remove the saw damage caused by cutting a Si ingot; it can also be used to etch the rear side of a textured crystalline silicon solar cell before atomic layer-deposited Al2O3 growth. However, the potassium remaining after KOH etching is known to be detrimental to the efficiency of Si solar cells. In this study, we etched a crystalline silicon solar cell in three ways in order to determine the effect of the potassium remnant on the efficiency of Si solar cells. After KOH etching, KOH and tetramethylammonium hydroxide (TMAH) were used to etch the rear side of a crystalline silicon solar cell. To passivate the rear side, an Al2O3 layer was deposited by atomic layer deposition (ALD). After ALD Al2O3 growth on the KOH-etched Si surface, we measured the lifetime of the solar cell by quasi steady-state photoconductance (QSSPC, Sinton WCT-120) to analyze how effectively the Al2O3 layer passivated the interface of the Al2O3 layer and the Si surface. Secondary ion mass spectroscopy (SIMS) was also used to measure how much potassium remained on the surface of the Si wafer and at the interface of the Al2O3 layer and the Si surface after KOH etching and wet cleaning.

  • PDF