• Title/Summary/Keyword: surface subsidence

Search Result 158, Processing Time 0.028 seconds

Development of Impact Evaluation and Diagnostic Indicators for Sinkholes

  • Lee, KyungSu;Kim, TaeHyeong
    • International Journal of Contents
    • /
    • v.14 no.3
    • /
    • pp.53-60
    • /
    • 2018
  • Based on the previous studies on sinkholes and ground subsidence conducted until date, the factors affecting the occurrence of sinkholes can be divided into natural environmental factors and human environmental factors in accordance with the purpose of the study. Furthermore, to be more specific, the human environment can be classified into the artificial type and the social type. In this study, the assessment indices for assessing risks of sinkholes and ground subsidence were developed by performing AHP analysis based on the results of the study by Lee et al. (2016), who selected the risk factors for the occurrence of sinkholes by performing Delphi analysis targeting relevant experts. Analysis showed that the artificial environmental factors were of significance in affecting the occurrence of sinkholes. Explicitly, the underground factors were found to be of importance in the natural environment, and among them, the level of underground water turned out to be an imperative influencing factor. In the artificial environment, the underground and subterranean structures exhibited similar importance, and in the underground structures, the excessive use of the underground space was found to be an important influencing factor. In the subterranean ones, the level of water leakage and the erosion of the water supply and sewage piping system were the influential factors, and in the surface, compaction failure was observed as an imperative factor. In the social environment, the regional development, and above all, the groundwater overuse were found to be important factors. In the managemental and institutional environment, the improper construction management proved to be the most important influencing factor.

Moment-rotational analysis of soil during mining induced ground movements by hybrid machine learning assisted quantification models of ELM-SVM

  • Dai, Bibo;Xu, Zhijun;Zeng, Jie;Zandi, Yousef;Rahimi, Abouzar;Pourkhorshidi, Sara;Khadimallah, Mohamed Amine;Zhao, Xingdong;El-Arab, Islam Ezz
    • Steel and Composite Structures
    • /
    • v.41 no.6
    • /
    • pp.831-850
    • /
    • 2021
  • Surface subsidence caused by mining subsidence has an impact on neighboring structures and utilities. In other words, subsurface voids created by mining or tunneling activities induce soil movement, exposing buildings to physical and/or functional destruction. Soil-structure is evaluated employing probability distribution laws to account for their uncertainty and complexity to estimate structural vulnerability. In this study, to investigate the displacement field and surface settlement profile caused by mining subsidence, on the basis of a Winklersoil model, analytical equations for the moment-rotation response ofsoil during mining induced ground movements are developed. To define the full static moment-rotation response, an equation for the uplift-yield state is constructed and integrated with equations for the uplift- and yield-only conditions. The constructed model's findings reveal that the inverse of the factor of safety (x) has a considerable influence on the moment-rotation curve. The maximal moment-rotation response of the footing is defined by X = 0:6. Despite the use of Winkler model, the computed moment-rotation response results derived from the literature were analyzed through the ELM-SVM hybrid of Extreme Learning Machine (ELM) and Support Vector Machine (SVM). Also, Monte Carlo simulations are used to apply continuous random parameters to assess the transmission of ground motions to structures. Following the findings of RMSE and R2, the results show that the choice of probabilistic laws of input parameters has a substantial impact on the outcome of analysis performed.

Application of integrated geophysical methods to investigate the cause of ground subsidence of the highly civilized area

  • Kim Jung-Ho;Yi Myeong-Jong;Hwang Se-Ho;Song Yoonho;Cho Seong-Jun;Lee Seong-Kon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.410-415
    • /
    • 2003
  • Ground subsidence has occurred in the downtown of Muan-eup in Korea. Integrated geophysical survey, including two-dimensional resistivity, CSMT(Controlled source magnetotelluric), magnetic, borehole logging, GPR and resistivity tomography, has been conducted to investigate the cause of subsidence and ground conditions. Since the target area is in the city downtown, there were no spaces for surface geophysical methods. To get regional geology and to facilitate the detailed geophysical interpretation in the survey area, two-dimensional resistivity, CSMT and magnetic surveys have been applied in the outer region of the downtown. From these results, we could accurately define the Gwangju fault system and estimate the geologic conditions in the downtown. For the detailed survey of the downtown area, resistivity tomography and borehole logging data have been acquired using a few tens of densely located boreholes. Among these survey results, borehole logging data provided the guide to classification of the rock type and we could define the geologic boundary of granite and limestone formations. From the resistivity tomograms of 42 sections, which are densely located enough to be interpreted in a three-dimensional manner, we could delineate the possible weak zones or cavities in the limestone formations. In particular, resistivity tomograms in the subsided area showed the real image of ground subsidence. The map of hazardous zone has been derived from the joint interpretation of these survey results and we could provide the possible reinforcement strategy in this area.

  • PDF

Influence Ground Sinking with Variation of Ground Water Level (지하수위 변화에 따른 지반함몰 영향연구)

  • Kim, Suk-Ja;Jung, Kwan-Sue
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.4
    • /
    • pp.399-408
    • /
    • 2018
  • Purpose: Recently, the ground subsidence has caused social problem, because it occurred life and economic damage. Method: Ground subsidence is different from a sink hole. Ground subsidence occurred cavities from loss of by groundwater flow, surface layer is collapsed due to relaxation and expansion. Results: According to the survey, the caused of ground subsidence are classified as ground cavities, surrounding ground relaxation and pipe joint failure. Conclution: Cavities of ground is mainly caused by cavities formed by rainfall induced infiltration of the heavy rainfall, loss of soil due to rise and fall of ground water level and repeated sewage runoff.

Urban Subsidence Monitoring in Ulsan City Using GACOS Based Tropospheric Delay Corrected Time-series SBAS-InSAR Technique (GACOS 모델 대기 위상 지연 보정을 활용한 SBAS-InSAR 기술 기반 울산광역시 지반 침하 탐지)

  • Vadivel, Suresh Krishnan Palanisamy;Kim, Duk-jin;Lee, Jung-hoon;Song, Juyoung;Kim, Junwoo
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1081-1089
    • /
    • 2022
  • This study aims to investigate and monitor the ground subsidence in Ulsan city, South Korea using time-series Small Baseline Subset (SBAS)-InSAR analysis. We used 79 Sentinel-1 SAR scenes and 385 interferograms to estimate the ground displacements at Ulsan city from May 2015 and December 2021. Two subsiding regions Buk-gu and Nam-gu Samsan-dong were found with the subsidence rate of 3.44 cm/year and 1.68 cm/year. In addition, we evaluated the possibility of removing the effect of atmospheric (tropospheric delay) phase in unwrapped phase using the Zenith Total Delay (ZTD) maps from Generic Atmospheric Correction Online Service (GACOS).We found that the difference between the SBAS-InSAR ground displacements before and after GACOS ZTD correction is less than 1 mm/year in this study.

Corrosion of Calcareous Rocks and Ground Subsidence in the Muan Area, Jeonnam, Korea (전남 무안지역에 분포하는 석회질암의 용식작용과 지반침하)

  • Ahn, Kun-Sang
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.2 s.48
    • /
    • pp.47-58
    • /
    • 2007
  • This study examines the distribution of basement rocks in Gyochon-ri, Muan-eup, Muan-gun, Jeonnam where ground subsidence occurred in June 2005, and traces corrosion of limestone. Mica schist and rhyolite are distributed in the surface of the study area, but thick limestone layer with large and small caverns are distributed underground. A horizon of limestone with maximum width of 300 m and 4 km of length was found along the detour which is in the north of pound subsidence. Such identification of limestone presence would be very useful to predict potential ground subsidence. Limestone in this area was disturbed by fold and fault due to severe shearing deformation. Small caverns were frequently found in anticline part of folds formed in limestone layer. Schists with different thicknesses were intercalated in the limestone with shearing deformation and consist of sheet silicate minerals (chlorite and mica) and quartz. In sections of weathered specimen, it is shown that biotite of schist part was altered into chlorite and corrosion of calcite around the schist followed. This suggest that ground water permeated between intercalated sheet silicate minerals and corrosion of limestone began. And small caverns were generated where active corrosion occurred. This study suggests that because of many reasons (for instance, reclamation of the Bulmu reservior and excess pumping), cavern water level was lowered and cave sediments were removed, and it caused ground subsidence to occur.

A Study on the Basic Geometry Analysis of Abandoned Underground Mine Tunnels in Korea and Advanced Measuring-Analysis Technology for Underground Mine Cavities (한국의 폐광산 지하 채굴갱도 기초형상 분석 및 개선된 광산 지하공동 측정·분석 기술 연구)

  • Kim, Soo-Lo;Park, Sung-Bin;Choi, Byung-Hee;Yun, Jung-Mann;Jeong, Gyo-Cheol
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.455-465
    • /
    • 2016
  • The collapse of underground mine development void for mineral resources can cause the subsidence of ground surface. In order to prevent the subsidence of ground, data such as maps or pictures of past mining site is important information for current mine reclamation works. In particular, mine subsidence management was based on mining maps and pictures. The process of the mining area surveys, safety evaluation, and ground reinforcement are normally possible with information such as maps and pictures in past mining. During the Japanese colonial period and 1960's, a lot of mines were developed in Korea indiscriminately. However, mining information at that time is limited to use. In the future, mining information will become even more rare. MIRECO intends to establish a realistic alternative solution. In this study, the basic numerical information of developed mine tunnels in Korea is statistically reviewed, and advanced underground cavity measuring technology was studied. 4,473 mine tunnel opening data of 1,784 abandoned mines in korea were collected and sorted. As a result of the analysis, the average value of small mine tunnel openings in Korea was 1.982 m in height and 1.959 m in width. The mean value of shape factor was analyzed as 0.485. The summary of these numerical mine data will be helpful for understanding and researching Korean abandoned mines. Therefore, the development of measurement technology for abandoned mine cavities and tunnels is expected to facilitate more effective mine subsidence management works in Korea.

The high accurate monitoring technique of land deformation by using satellite image - PSInSAR -

  • Mizuno Toshimi;Kuzuoka Shigeki
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.305-312
    • /
    • 2003
  • Remote sensing can provide invisible information in addition to acquire wide-view image data from space. Synthetic Aperture Radar (SAR) transmits microwave to the earth from a satellite and collects the reflected echo from the surface. Interferometric processing of SAR data can detect the subtle land deformation. The information of the surface movement by SAR is useful to monitor the volcanic activity, extended subsidence of urbanized area and the prediction of the earthquake caused by crustal deformation, and it complements the conventional levelling and GPS technique. PSInSAR (Permanent Scatterers Interferometric SAR) is one of interferometric techniques to be applied to practical projects in Japan. In this paper, the projects of land deformation monitoring are shown after the explanations of the PSInSAR principle. Tokai earthquake risk assessment is the first example. PSInSAR detects the subduction of crustal deformation of the adjacent area of new assumed epicenter region of the Tokai Earthquake. The extended subsidence of the urbanized area was implemented by using Japanese satellite data i.e. JERS that has so much data the surrounding of Japan as the archive. We examine the relationship between the geological structure and settlement at Nohbi basin including Nagoya city.

  • PDF

Experimental study on the ground subsidence due to the excavation of a shallow tunnel (경사지반에서 얕은터널의 굴착에 따른 지표침하에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.761-778
    • /
    • 2017
  • The need of the underground space for the infrastructures in urban area is increasing, and especially the demand for shallow tunnels increased drastically. It is very important that the shallow tunnel in the urban area should fulfill not only its own safety conditions but also the safety condition for the adjacent structures and the surrounding sub-structure. Most of the studies on the behavior of shallow tunnels concentrated only on their behaviors due to the local deformation of the tunnel, such as tunnel crown or tunnel sidewall. However, few studies have been performed for the behavior of the shallow tunnel due to the deformation of the entire tunnel. Therefore, in this study the behavior of the surrounding ground and the stability caused by deformation of the whole tunnel were studied. For that purpose, model tests were performed for the various ground surface slopes and the cover depth of the tunnel. The model tunnel (width 300 mm, height 200 mm) could be simulationally deformed in the vertical and horizontal direction. The model ground was built by using carbon rods of three types (4 mm, 6 mm, 8 mm), in various surface slopes and cover depth of the tunnel. The subsidence of ground surface, the load on the tunnel crown and the sidewall, and the transferred load near tunnel were measured. As results, the ground surface subsided above the tunnel, and its amount decreased as the distance from the tunnel increased. The influence of a tunnel ceased in a certain distance from the tunnel. At the inclined ground surface, the wider subsidence has been occurred. The loads on the crown and the sidewall were clearly visible, but there was no effect of the surface slope at a certain depth. The load transfer on the adjacent ground was larger when the cover depth (on the horizontal surface) was lager. The higher the level (on the inclined surface), the wider and smaller it appeared. On the shallow tunnel under inclined surface, the transfer of the ambient load on the tunnel sidewall (low side) was clearly visible.

Proposal of the Development Direction on the Special Act on Underground Safety Management for Preparation of the Proactive Underground Safety Management System (선제적 지하안전관리체계 마련을 위한 지하안전관리에 관한 특별법의 발전방향 제시)

  • Han, Yushik
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.17-27
    • /
    • 2018
  • Sinkholes have occurred in various places around the world and concerns about public safety have been raised in recent years. Particularly, a ground subsidence may occur due to a variety of conditions when developing underground spaces. Ground subsidence refers to the sinking of the Earth's surface caused by the loss of the soil constituting ground due to a certain artificial cause in the ground. Ground subsidence is induced by artificial causes such as the leakage of water supply/sewage pipes and groundwater disturbance, and it is different from a sinkhole, where the sinking of the Earth's surface is induced by the cavity formed due to the melting of limestone in the ground with limestone bedrock. In recent underground development in the urban areas of Korea, damages to surrounding buildings have frequently led to many difficulties with civil complaints and compensation issues, and the collapse of some buildings has resulted in the loss of lives and property. Accordingly, the central government has legislated the Special Act on Underground Safety Management, which will take effect from January 1, 2018. This law specifies an underground safety management system for securing underground safety, under which underground safety impact assessment is performed for projects involving underground excavation work that exceeds a certain size, and safety inspection is regularly performed for underground facilities and the surrounding ground. In this study, the contents of the special act on underground safety management are reviewed, and the direction of development of underground safety policy for preparing preemptive underground safety management preparation and response system is suggested.