• Title/Summary/Keyword: surface subsidence

Search Result 158, Processing Time 0.023 seconds

Measurement of Time-Series Surface Deformation at New Orleans Using Small Baseline Subset (SBAS) Method

  • Jo, Min-Jeong;Eom, Jin-Ah;Won, Joong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.49-52
    • /
    • 2008
  • New Orleans located in the estuary of the Mississippi River was attacked by Hurricane Katrina and suffered big flood on August 2005. Since unconsolidated Holocene to middle Miocene strata is the main basement rocks, land subsidence has been occurred steadily due to soil compaction and normal faulting. It was reported that the maximum subsidence rate from 2002 to 2005 was -29 mm/yr. Many studies in the area have been carried out for understanding the subsiding and potential risks caused by ground subsidence are weighted by the fact that a large area of the city is located below the mean sea level. A small baseline subset (SBAS) method is applied for effectively measuring time-series LOS (Line-of sight) surface deformation from differential synthetic aperture radar interferograms in this study. The time-series surface deformation at New Orleans was measured from RADARSAT-1 SAR images. The used dataset consists of twenty-one RADARSAT-1 fine beam mode images on descending orbits from February 2005 to February 2007 and another twenty-one RADARSAT-1 standard beam mode images on ascending orbits from January 2005 to February 2007. From this dataset, 25 and 38 differential interferograms on descending and ascending orbits were constructed, respectively. The vertical and horizontal components of surface deformation were extracted from ascending and descending LOS surface deformations. The result from vertical component of surface deformation indicates that subsidence is not significant with a mean rate of -3.1${\pm}$3.2 mm/yr.

  • PDF

Deformation process and prediction of filling gangue: A case study in China

  • Wang, Changxiang;Lu, Yao;Li, Yangyang;Zhang, Buchu;Liang, Yanbo
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.417-426
    • /
    • 2019
  • Gangue filling in the goaf is an effective measure to control the surface subsidence. However, due to the obvious deformation of gangue compression, the filling effect deserves to be further studied. To this end, the deformation of coal gangue filling in the goaf is analyzed by theoretical analysis, large-scale crushed rock compression test, and field investigation. Through the compression test of crushed rock, the deformation behaviour characteristics and energy dissipation characteristics is obtained and analysed. The influencing factors of gangue filling and predicted amount of main deformation are summarized. Besides, the predicted equation and filling subsidence coefficients of gangue are obtained. The gangue filling effect was monitored by the movement observation of surface rock. Gangue filling can support the roof of the goaf, effectively control the surface subsidence with little influence on the ground villages. The premeter and equations of the main deformation in the gangue filling are verified, and the subsidence coefficient is further reduced by adding cemented material or fine sand. This paper provides a practical and theoretical reference for further development of gangue filling.

The Road Subsidence Status and Safety Improvement Plans (도로함몰 실태와 안전관리 개선 방안)

  • Bae, Yoon-Shin;Kim, Kyoon-Tai;Lee, Sang-Yum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.545-552
    • /
    • 2017
  • Ground subsidence can result in the formation of sinkholes, potholes, settlement of structures, and road subsidence. Road subsidence is described as the sudden collapse of the road surface into subsurface cavities caused by the loss of bearing capacity in the ground, such as the dissolution of limestone by fluid flow in the surface causing the formation of voids leading to subsidence at the surface. Road subsidence occurs about 665 times annually, and this incidence has been increasing until 2013. Damaged underground facilities, management negligence, and lowering of the ground water table have been the causes of road subsidence in Seoul. Seoul metropolitan government announced special management counter plans to relieve the anxieties and make the roads safe for passing. Construction sites, such as excavation works, need to be managed properly because they have strong potential to induce road subsidence. The aim of this study was to identify the main causes of road subsidence and suggest management plans. First, life cycle cost analysis revealed the daytime construction to be more appropriate than nighttime. In addition, by analyzing the limitations of using sand as a backfill material, it is proposed to use a flowable backfill material instead of sand. Finally, to reduce the blind spots, which is a problem in surveying the road pavement conditions of local governments, the road to be managed is divided into several zones, and a specialized agency is selected for each zone and a method of surveying the blind spots through collaboration is suggested.

DEM Simulation on the Initiation and Development of Road Subsidence (개별요소법을 활용한 도로함몰 발생과 전개거동 예측)

  • Kim, Yeonho;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.43-53
    • /
    • 2017
  • Road subsidence, frequently occurring in urban areas, is caused by collapsing of surface layer due to underground cavities followed by a loss of soils. To better understand this phenomenon, the mechanism of cavity formation should be identified firstly. Two kinds of possible subsidence mechanisms were established through previous case studies and the numerical analyses based on Distinct Element Method were conducted for each of these mechanisms. It was confirmed that particle loss and surface settlement can develop differently depending on slit size, void ratio, and particle shape among the various factors influencing the road subsidence. The result demonstrated that the effects of varying cavity diameter and depth could be quantified as a damage chart.

A Study on the Correlation between Coal Mining Subsidence and Underground Goaf (페탄광지역의 지반침하발생과 지하 채굴적의 상관관계 연구)

  • Choi, Jong-Kuk;Kim, Ki-Dong;Song, Kyo-Young;Jo, Min-Jeong
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.453-464
    • /
    • 2008
  • This study is to examine a relation between coal mining subsidence occurrence at abandoned underground coal mines and underground goaf with respect to surface geology, subsurface structure, depth and thickness of coal beds and the distribution of drifts. A study is carried out at the site where susceptibility of coal mining subsidence was proven high in a previous study. In that previous study, the susceptibility of coal mining subsidence was spatially analyzed by GIS using digitized geological maps, investigation reports, digitized mining tunnel maps without consideration of subsurface structure and the multi-level arrangement of drifts. Here we analyze geological characteristics around the goaf and the distribution of coal seam based upon digitized geological maps and investigation reports on the study area. And digitized mining tunnel maps are also used to analyze the depth and multi-level arrangement of drifts. The results show that weakened surface rock strength, relatively shallow depth and large thickness of coal seam below the surface are closely related to the coal mining subsidence occurrence. Complicatedly inter-connected drifts, shallow depth of drifts and surface rock fractures are revealed as additional control factors affecting coal mining subsidence. These factors examined in this study as well as original factors should be taken into account for the quantitative estimation of coal mining subsidence occurrence at abandoned underground coal mine.

Application of PSInSAR technique for Monitoring Surface Deformation over Coastal Area of Incheon (인천연안지역의 지표변위 관측을 위한 인공위성 SAR 자료의 활용)

  • Kim, Jun-Su;Park, Sang-Eun;Moon, Woo-Il M.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.277-280
    • /
    • 2006
  • Many industrial fields were constructed on the reclaimed land which was used to be a tidal land. Because the industrial fields stand on weak basement, they are likely to be influenced by surface subsidence. Therefore, the surface subsidence monitoring is required for civil protection. In this study, a novel method to monitor land displacement, PSInSAR technique, was applied to monitor the land subsidence of Incheon Port, which happened a decade ago. Although the land was reclaimed more than 20 years ago, quite a bit of deformation was observed during six years. The maximum subsidence rate reached to 30 mm/year. JERS-1 data was exploited in this study.

  • PDF

Characteristics of Subsidence above a Shallow Tunnel Excavated in Weathered Rock Mass (풍화암반 저심도 터널 굴착 중 발생한 지표침하의 특성)

  • Kim, Chee-Hwan
    • Tunnel and Underground Space
    • /
    • v.23 no.5
    • /
    • pp.337-346
    • /
    • 2013
  • The characteristics of subsidence above a shallow tunnel excavated in weathered rock mass is analyzed. The tunnel is excavated minimum about 11m beneath some buildings and the width of the tunnel is 11m, too. Subsidence pins are installed at 23 locations on surface along the tunnel, 180m long, adjacent to the buildings. Subsidences are measured for about 2 years and they are optimized to analyze three dimensional deformed ground surface, trough width parameter K and sectional volume loss of unit tunnel length Vs of the surface deformation profile.

Analysis of Ground Subsidence according to Tunnel Passage in Geological Vulnerable Zone (지질취약구간 터널통과에 따른 지반침하량 분석)

  • Choi, Jung-Youl;Yang, Gyu-Nam;Kim, Tae-Jun;Chung, Jee Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.3
    • /
    • pp.393-399
    • /
    • 2020
  • In this study, the subsidence behavior caused by groundwater ex-flow in a limestone cavity encountered during tunnel excavation was quantified based on numerical analysis and the effect was analyzed. Based on the groundwater level and surface subsidence surveyed at the site, a numerical analysis technique was applied to analyze the characteristics of the subsidence behavior according to the tunnel passage of the geological vulnerabilities. The results of groundwater seepage-coupled analysis were analyzed to reflect the actual ground subsidence behavior. As a result of the study, it was analyzed that the ground subsidence due to the tunnel excavation in the limestone common section(the geological vulnerable zone) was analyzed that the dramatical decrease in groundwater level was the main cause. As a result of numerical analysis, it was analyzed that the long-term cumulative settlement of the asphalt surface after the groundwater ex-flow was 76~118mm due to the reduction of the volume of the soil layer due to the decrease in the groundwater level, and the settlement amount increased as the depth of the soil layer increased.

GIS for Subsidence Analysis by Considering Surface Condition (지표면의 조건을 고려한 지반침하 분석용 GIS)

  • 권광수;이준용;박형동
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.595-600
    • /
    • 2001
  • Recently, interests in subsidence hazard have been increased due to the underground construction such as subway construction and managements of abandoned mines. GIS analysis of subsidence hazard has a lot of advantages in handling of spatial data and managing database. For better result of GIS analysis, there are some necessities of modifying previous subsidence theory and model. To take surface profile into account allows the application of complicated topology. Furthermore. for 3-dimensional analysis. two subsidence profile curves that are perpendicular to each other should be considered simultaneously. Through these modifications, the model for subsidence analysis using GIS can be established. With ideal case of cavities and other conditions, GIS analysis was accomplished and meaningful results were produced. More realistic properties of cavity. soil layers, groundwater condition and topology will enable GIS analysis method to produce more reliable result and to widen the area of applications.

  • PDF

Measurement of Ground Subsidence in Mokpo Area from Radar Intrerferometry (영상레이더를 이용한 목포 지반침하 관측)

  • Kim Sang-Wan;Kim Chang-Oh;Won Joong-Sun;Kim Jeong Woo
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.381-394
    • /
    • 2005
  • Mokpo city is a coastal city located at the south western coast of the Korean Peninsula. Large regions within Mokpo are subjected to significant subsidence because about $70\%$ of the city area is a reclaimed land from the sea. Although no confidential quantitative measurements are available up to the present, the subsidence rate is as much as several cm per year. In this study, we aimed to estimate the subsidence rate over Mokpo city by using twenty-six JERS-1 SAR dataset from September 1992 to October 1998. Several tens of differential interferograms were processed from JERS-1 dataset and STRM 3-arc DEM. The results indicate continuous subsidence in Dongmyung-dong, Hadang-dong and Wonsan-dong in city, and the subsidence velocity reach over 4 cm/yr in the most highly sinking area. For facilitating the analysis of time-varying surface change, we also carried out an interferometric SAR time series analysis using permanent scatterer and consequently determined space-time maps of surface deformation at each acquisition time of JERS- 1 SAR.