• Title/Summary/Keyword: surface subsidence

Search Result 158, Processing Time 0.022 seconds

Prediction model of surface subsidence for salt rock storage based on logistic function

  • Wang, Jun-Bao;Liu, Xin-Rong;Huang, Yao-Xian;Zhang, Xi-Cheng
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.25-37
    • /
    • 2015
  • To predict the surface subsidence of salt rock storage, a new surface subsidence basin model is proposed based on the Logistic function from the phenomenological perspective. Analysis shows that the subsidence curve on the main section of the model is S-shaped, similar to that of the actual surface subsidence basin; the control parameter of the subsidence curve shape can be changed to allow for flexible adjustment of the curve shape. By using this model in combination with the MMF time function that reflects the single point subsidence-time relationship of the surface, a new dynamic prediction model of full section surface subsidence for salt rock storage is established, and the numerical simulation calculation results are used to verify the availability of the new model. The prediction results agree well with the numerical simulation results, and the model reflects the continued development of surface subsidence basin over time, which is expected to provide some insight into the prediction and visualization research on surface subsidence of salt rock storage.

Surface Subsidence according to Progressive Collapse of Circular opening (원형공동의 점진적인 붕락에 따른 지표침하특성)

  • 지정배;김종우
    • Tunnel and Underground Space
    • /
    • v.10 no.1
    • /
    • pp.33-44
    • /
    • 2000
  • In order to investigate the effect of progressive collapse of underground circular opening on surface subsidence, laboratory model tests were performed. The modelling materials were sand which has been used as KS standard. Six test models which had respectively different depths of openings were produced. Surface subsidence and horizontal displacements were measured according to progressive collapse of underground opening. Some subsidence prediction method such as NCB method, profile function method and influence function method were considered to predict the subsidence of sand models. The profile function method approximated by Gaussian error function was finally suggested as the most appropriate to sand models.

  • PDF

A Study on the Volumetric Expansion Ratio of Rock Mass for Subsidence Behavior Analysis II (지반침하 거동특성 분석을 위한 암반의 부피팽창률에 관한 연구 II)

  • Lee, Seung-Joong;Jung, Yong-Bok;Choi, Sung-O.
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.436-446
    • /
    • 2008
  • The volumetric expansion ratio of rock mass on the subsidence occurrence area can explain why the depth of the surface subsidence is lower than the height of an opening; it is because the empty space of the gangway is filled with the broken rock. But, until now, when the surface subsidence mechanism is studied without consideration of the volumetric expansion ratio, it is usually overlooked that the amount of subsidence occurrence can be overestimated. Therefore, in this study, the authors researched the subsidence occurrence mechanism with a new theoretical approaching method. The volumetric expansion ratio obtained from this method has been applied to the numerical simulations. The authors adopted the UDEC(Universal Distinct Element Code) for their discontinuum numerical analysis, because this program has an advantage for analyzing the behavior of rock discontinuities.

Monitoring Time-Series Subsidence Observation in Incheon Using X-Band COSMO-SkyMed Synthetic Aperture Radar

  • Sang-Hoon Hong
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.141-150
    • /
    • 2024
  • Ground subsidence in urban areas is mainly caused by anthropogenic factors such as excessive groundwater extraction and underground infrastructure development in the subsurface composed of soft materials. Global Navigation Satellite System data with high temporal resolution have been widely used to measure surface displacements accurately. However, these point-based terrestrial measurements with the low spatial resolution are somewhat limited in observing two-dimensional continuous surface displacements over large areas. The synthetic aperture radar interferometry (InSAR) technique can construct relatively high spatial resolution surface displacement information with accuracy ranging from millimeters to centimeters. Although constellation operations of SAR satellites have improved the revisit cycle, the temporal resolution of space-based observations is still low compared to in-situ observations. In this study, we evaluate the extraction of a time-series of surface displacement in Incheon Metropolitan City, South Korea, using the small baseline subset technique implemented using the commercial software, Gamma. For this purpose, 24 COSMO-SkyMed X-band SAR observations were collected from July 12, 2011, to August 27, 2012. The time-series surface displacement results were improved by reducing random phase noise, correcting residual phase due to satellite orbit errors, and mitigating nonlinear atmospheric phase artifacts. The perpendicular baseline of the collected COSMO-SkyMed SAR images was set to approximately 2-300 m. The surface displacement related to the ground subsidence was detected approximately 1 cm annually around a few Incheon Subway Line 2 route stations. The sufficient coherence indicates that the satellite orbit has been precisely managed for the interferometric processing.

A Case Study on the Cause Analysis of Subsidence in Limestone Mine Using LiDAR-Based Geometry Model (라이다 기반 정밀 형상 모델 활용 석회석 광산 지반침하 원인분석 사례연구)

  • Hwicheol Ko;Taewook Ha;Sang Won Jeong;Sunghyun Park;Seung-tae Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.126-140
    • /
    • 2023
  • In this study, the cause of subsidence in limestone mine was analyzed using a LiDAR-based geometry model. Using UAV and ground-based LiDAR systems, a precise geometry model was constructed for the subsidence surface and mine tunnel, and the results of on-site geological survey and rock mass classification were utilized. Through the geometry model, distribution of thickness of crown pillar and faults around the subsidence area, calculation of the volume of the subsidence area and subsidence deposit, and analysis of the subsidence surface inclination were conducted. Through these analyzes, the causes of ground subsidence were identified.

Application of Fuzzy Reasoning Method for Prediction of Subsidence Occurrences in Abandoned Mine Area (폐광산 지역에서의 지반침하예측을 위한 퍼지추론기법 적용 연구)

  • Choi, Sung-O.;Kim, Jae-Dong;Choi, Gwang-Su
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.463-472
    • /
    • 2009
  • Many old domestic mines were excavated with the room and pillar method or the sublevel caving method and they involve the great possibility of surface subsidence, especially in the shallow depth mines. In most of these cases, the mine roadways and openings are very irregular in shape and the information about the local geology is uncertain. Consequently it is not simple to standardize the estimation method for the possibility of subsidence, especially the sinkhole subsidence. In this study, the fuzzy reasoning method has been applied for development of estimating the possibility of subsidence occurrence in abandoned mine area. This method has the advantage in producing the reliable estimation results with a simple performance procedure even when the precise information on the local geology and mining conditions is rare. For the verification of applicability of this method, the developed method has been applied to Kumho mine in Bonghwa, Kyungbook province and the Choong-ju mine in Iryu, Choongbook province where the surface subsidence occurred already.

Study of Influence Factors for Prediction of Ground Subsidence Risk

  • Park, Jin Young;Jang, Eugene;Ihm, Myeong Hyeok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2017
  • This Analyzed case study of measuring displacement, implemented laboratory investigation, and in-situ testing in order to interpret ground subsidence risk rating by excavation work. Since geological features of each country are different, it is necessary to objectify or classify quantitatively ground subsidence risk evaluation in accordance with Korean ground character. Induced main factor that could be evaluated and used to predicted ground subsidence risk through literature investigation and analysis study on research trend related to the ground subsidence. Major factors of ground subsidence might be classified by geological features as overburden, boundary surface of ground, soil, rock and water. These factors affect each other differently in accordance with type of ground that's classified soil, rock, or complex. Then rock could be classified including limestone element or not, also in case of the latter it might be classified whether brittle shear zone or not.

Risk Of Buildings Damage Due To Subsidence During Tunnelling Under The Buildings In Sand-Gravel Layer (빌딩하부 모래자갈층에서 터널시공 중 발생한 지표침하에 의한 빌딩의 손상)

  • Kim, Cheehwan
    • Tunnel and Underground Space
    • /
    • v.25 no.4
    • /
    • pp.383-396
    • /
    • 2015
  • It is analyzed the risk of building damage due to ground surface subsidence occurred during constructing a tunnel below buildings in sand-gravel layer. The overburden and the thickness of sand-gravel layer is about 20m and the width and the height of the tunnel are 12m and 8.6m, respectively. The tunnel is pre-reinforced by umbrella method with three rows of long steel pipes and grouting. Surface subsidence is measured at 36 points surrounding buildings and measured data are used to calculate optimized three dimensional subsidence surface. Depending on the building location, deflection ratio and horizontal strain are calculated to evaluate the risk of building damage. No damage occurs at the buildings because of both the small deflection ratios involved 1~4mm subsidence and compressive horizontal strains.

A Study on the Evaluation Method of Subsidence Hazard by a Diffusion Equation and its Application (확산방정식을 이용한 침하 위험도 평가 기법 및 그 적용)

  • Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong;Kim, Taek-Kon;Park, Joon-Young
    • Tunnel and Underground Space
    • /
    • v.17 no.5
    • /
    • pp.372-380
    • /
    • 2007
  • Surface damage due to subsidence is an inevitable consequence of underground mining, which may be immediate or delayed for many years. The surface damage due to abandoned underground mine is observed to be two subsidence types such as simple sinkhole or trough formation to a large scale sliding of the ground from with in the subsided area. An evaluation of the risk of a subsidence occurrence is vital in the areas affected by mining subsidence. For a subsidence prediction or a risk evaluation, there has been used various methods using empirical models, profile functions, influence functions and numerical models. In this study, a simple but efficient evaluation method of subsidence hazard is suggested, which is based on a diffusion theory and uses just information about geometry of caving and topography. The diffusion model has an analogous relationship with granular model which can explain a mechanism of subsidence. The diffusion model is applied for the evaluation of subsidence hazard in abandoned metal and coal mines. The model is found to be a simple but efficient tool because it needs information of geometry of caving and gangway and the topography.

A Study on the Prediction of Surface Subsidence Zone through the Case Studies on Mined-out Area (채굴적에 의한 지반침하 사례 분석을 통한 침하발생 범위의 추정에 관한 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.31-41
    • /
    • 2013
  • Graphical method has been widely applied to the prediction of subsidence area, and is known to have advantages in analysis of trough subsidence which is common in horizontally seamed mine area. However, it is reported that most of the ore bodies in Korea are geologically inclined from sub-horizontal to steep, and therefore, the sinkhole subsidence is frequent in abandoned mine area. For these reasons, it is not to be desired that graphical method is applied for predicting the subsidence occurrence. This paper describes the results of subsidence zone prediction considering the dip direction and the opposite direction of inclined ore bodies from the case studies on the 163 subsidence occurrence regions. The results show also the assumed angle which can define the range of subsidence in the surface area. In conclusion, the limit of this angle is suggested after taking into account the comparison with graphical method and the application to the case histories.