• 제목/요약/키워드: surface stress

Search Result 4,100, Processing Time 0.029 seconds

A Simplified Estimation of Stress Intensity Factor on the Hertzian Contact

  • Jin, Songbo;Kim, Seock-Sam
    • KSTLE International Journal
    • /
    • v.1 no.1
    • /
    • pp.8-11
    • /
    • 2000
  • A surface crack in a semi-infinite body under Hertzian contact was considered. The simplified method used to estimate stress intensity factor K for specimen was extended to the model which is chosen in this paper. Very satisfactory results are obtained comparing with those known and it is proved that the method is more convenient than other methods. The results of the analysis show that due to the presence of $K_I$ for unlubricated condition, mode I fracture is active in the field below the surface and the maximum $K_{I}$ is obtained when the trailing edge of Hertzian contact reaches a position over the crack. The magnitudes of stress intensity factors $K_I$ and $K_Il$ increase with increasing friction forces. For a surface crack perpendicular to the contact surface, the stress intensity factor $K_I$ reaches its maximum value at a depth very close to the surface. Driving forve fer crack initiation and propagation is $K_I$ for unlubricated condition and $K_Il$ for both fluid and boundary lubricated condition.n.

  • PDF

A Study on the Fatigue Crack of Material by Surface Non-Traditional Machining (표면특수가공에 따른 재료의 피로균열에 관한 연구)

  • 이태연;이승호;강진식
    • Transactions of Materials Processing
    • /
    • v.10 no.3
    • /
    • pp.179-184
    • /
    • 2001
  • The influence of the fatigue crack propagation by shot peening was studied in this paper. Fatigue tests were carried out on the unpeened and shot peened CT specimens. The changes of mechanical properties, residual stress, fatigue fracture surface etc. by shot peening were investigated. The mechanical properties, residual stress, fatigue surface etc. by shot peening were investigated. The mechanical peened specimen improved in fatigue life up to 14% by shot peening. The reason of increase in the fatigue life was closely related with the compressive residual stress, which was 519.7MPa on surface. Another reason was the constraint on crack opening on surface region, it is due to the decrease in slope of crack propagation direction.

  • PDF

Effect of Current Density and Solution pH on Properties of Electrodeposited Cu Thin Films from Sulfate Baths for FCCL Applications (Sulfate 용액을 이용하여 전기도금 한 FCCL용 Cu 필름의 특성에 미치는 전류밀도와 pH의 영향)

  • Shin, Dong-Yul;Park, Doek-Yong;Koo, Bon-Keup
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.4
    • /
    • pp.145-151
    • /
    • 2009
  • Nanocrystalline Cu thin films for FCCL were electrodeposited from sulfate baths to investigate systematically the influences of current density, solution pH on current efficiency, residual stress, surface morphology, and microstructure of thin Cu films. Current efficiencies were measured to be approximately 100%, irrespective of the applied current density and solution pH. But these influenced residual stress, surface morphology, XRD pattern, and grain size of electrodeposited Cu thin film. The residual stress decreased with decreasing the surface roughness, but increased with increasing the fcc(111) peak strength of XRD patterns.

Evaluation of the Crack Tip Fracture Behavior Considering Constraint Effects in the Reactor Pressure Vessel (구속효과를 고려한 원자로 압력 용기의 파괴거동 예측)

  • Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.908-913
    • /
    • 2000
  • In the process of integrity evaluation for nuclear power plant components, a series of fracture mechanics evaluation on surface cracks in reactor pressure vessel(RPV) must be conducted. These fracture mechanics evaluations are based on stress intensity factor, K. However, under pressurized thermal shock(PTS) conditions, the combination of thermal and mechanical stress by steep temperature gradient and internal pressure causes considerably high tensile stress at the inside of RPV wall. Besides, the internal pressure during the normal operation produces high tensile stress at the RPV wall. As a result cracks on inner surface of RPVs may experience elastic-plastic behavior which can be explained with J-integral. In such a case, however, J-integral may possibly lose its validity due to constraint effect. In this paper, in order to verify the suitability of J-integral, two dimensional finite element analyses were applied for various surface crack. Total of 18 crack geometries were analyzed, and Q stresses were obtained by comparing resulting HRR stress distribution with corresponding actual stress distributions. In conclusion, HRR stress fields were found to overestimate the actual crack-tin stress field due to constraint effect.

  • PDF

A Study on Machining Effects on Residual Stress at Dissimilar Metal Weld Region (기계가공이 이종용접부의 잔류응력에 미치는 영향에 관한 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Geun;Lee, Seong-Ho;Park, Chi-Yong;Lee, Seung-Geon;Park, Jai-Hak
    • Journal of Welding and Joining
    • /
    • v.29 no.2
    • /
    • pp.56-63
    • /
    • 2011
  • his paper aimed to understand the residual stress in the dissimilar metal welds of nuclear power plant. Two kinds of residual stress were considered, which caused by welding and machining. Residual stress due to mechanical machining was measured by hole-drilling technique and x-ray diffraction method for the SA508 and F316L. Weld residual stress at dissimilar metal weld between SA508 and F316L was evaluated by FEA. Residual stress profiles were obtained for the inside surface and through thickness of welds. Machining effect was also analyzed by FEA. According to the residual stress measurement, it was observed that mechanical machining can generate tensile stress on the surface of the test material. However, FEA results showed that mechanical machining did not increase the tensile stress on the surface of weld region. Further study with more elaborate measurement and numerical analysis is required to identify the effect of machining on residual stress in the dissimilar metal weld region.

Stress Intensity Factors and Possible Crack Propagation Mechanisms for a Crack Surface in a Polyethylene Tibia Component Subject to Rolling and Sliding Contact (구름마찰 접촉하중시 Polyethylene Tibia 표면균열의 응력확대계 수와 복합전파거동에 관한 연구)

  • Kim, Byung-Soo;Moon, Byung-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2019-2027
    • /
    • 2003
  • Pitting wear is a dominant from of polyethylene surface damage in total knee replacements, and may originate from surface cracks that propagate under repeated tribological contact. In this study, stress intensity factors, K$\_$I/and $_{4}$, were calculated for a surface crack in a polyethylene-CoCr-bone system under the rolling and/or sliding contact pressures. Crack length and load location were considered in determination of probable crack propagation mechanisms and fracture modes. Positive K$\_$I/ values were obtained for shorter cracks in rolling contact and for all crack lengths when the sliding load was apart from the crack. $_{4}$ was the greatest when the load was directly adjacent to the crack (g/a=${\pm}$1). Sliding friction caused a substantial increase of both K$\_$I/$\^$max/ and $_{4}$$\^$max/. The effective Mode I stress intensity factors, K$\_$eff/, were the greatest at g/a=${\pm}$1, showing the significance of high shear stresses generated by loads adjacent to surface cracks. Such behavior of K$\_$eff/ suggests mechanisms for surface pitting by which surface cracks may propagate along their original plane under repeated rolling or sliding contact.

Thermal Stress Analysis for a Brake Disk considering Pressure Distribution at a Frictional Surface (마찰면의 압력 분포를 고려한 제동디스크의 열응력 해석)

  • Lee Y.M.;Park J.S.;Seok C.S.;Lee C.W.;Kim J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.842-846
    • /
    • 2005
  • A brake disk and a pad are important parts that affect the braking stability of a railway vehicle. Especially, because a brake disk stops the vehicle using conversion of the kinetic energy to frictional energy, thermal fatigue cracks are generated by the cyclic thermal load, as frictional heat, on a frictional surface and these cracks cause the fracture of a brake disk. Therefore, many researches for the thermal stress must be performed to improve the efficiency of brake disk and ensure the braking stability. In this study, we performed the thermal stress analysis for a ventilated brake disk with 3-D analysis model. For that, we simplified the shape of a ventilated hole to minimize problems that could be occurred in analysis process. Thermal stress analysis was performed in case that pressure distributions on a frictional surface is constant and is not. To determine pressure distributions of irregular case, pressure distribution analysis for a frictional surface was carried out. Finally using the results that were obtained through pressure distribution analysis, we carried out thermal stress analysis of each case and investigated the results of thermal stress analysis.

  • PDF

Study on Effect of Mechanical Machining and Heat Treatment on Surface Residual Stress of TP316L Stainless Steel (TP 316L 스테인리스강의 기계가공 및 열처리에 의한 표면잔류응력 특성 측정 연구)

  • Lee, Kyoung-Soo;Lee, Jeong-Keun;Song, Ki-O;Park, Jai-Hak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.5
    • /
    • pp.453-458
    • /
    • 2011
  • We study the effect of mechanical machining and heat treatment on the surface residual stress of TP 316L stainless steel. Electrical discharge machining (EDM), milling and grinding were applied to TP 316L plate specimens. The residual stress and hardness were measured and the effect of heat treatment on the surface residual stress was examined. The residual stress was measured by the X-ray diffraction method, which showed that the surface residual stress was related only to the stress magnitude and was independent of the compressive or tensile component. The surface residual stress was greatly decreased by the heat treatment, but it was not removed completely.

The Effect of Grain Size on the Stress Shift toward Tensile Side by Deposition Interruptions in Copper Thin Films (구리 박막 제조중 증착 중단시 박막 결정립 크기 변화가 인장응력 방향으로의 응력 이동에 미치는 영향)

  • Lee, Seri;Oh, Seungkeun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.303-310
    • /
    • 2014
  • In this study, the average in-situ stress in metallic thin film was measured during deposition of the Cu thin films on the Si(111) wafer and then the phenomenon of stress shift by the interruption of deposition was measured using Cu thin films. We have observed the stress shift in accordance with changing amount of atom's movement between the surface and grain boundary through altering the grain size of the Cu thin film with variety of parameters. The grain size is known to be affected on the deposition rate, film thickness and deposition temperature. As a experimental results, the these parameters was not adequate to explain stress shift because these parameters affect directly on the amount of atom's movement between the surface and grain boundary as well as the grain size. Thus, we have observed the stress shift toward tensile side in accordance with the grain size changing through the interlayer deposition. From an experiment with inserting interlayer before deposit Cu, in thin film which has big grain size with high roughness, amount of stress movement is higher along direction of tensile stress after deposition that means, after deposition process, driving force of atoms moving in grain boundary and on the surface of the film is relatively higher than before.

Stress Intensity Factor Analysis of Nozzle Considering Pressure and Heat Transfer on Crack Face (균열면에 작용하는 내압과 열전달의 영향을 고려한 노즐부의 응력확대계수 해석)

  • Jeong, Min-Jung;Kim, Yeong-Jin;Gang, Gi-Ju;Beom, Hyeon-Gyu;Pyo, Chang-Ryul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2252-2258
    • /
    • 2000
  • In order to investigate the effect of nozzle on stress concentration in pressure vessels, three dimensional finite element analyses were performed. The results were compared with those for corresponding two dimensional axisymmetric finite element analyses. A three dimensional finite element model with a surface crack was also designed to evaluate the effect of internal pressure and heat transfer on crack face, and the resulting stress intensity factors from the finite element analyses were compared with those for ASME Sec. XI and Raju-Newman's stress intensity factor solution. As a result, the validity of currently available stress intensity factor solutions for a surface crack was reviewed in the presence of geometrical complexity, heat transfer and internal pressure.