• 제목/요약/키워드: surface stress

검색결과 4,072건 처리시간 0.031초

니켈쌀파메이트 전주층의 실시간 잔류응력 (Real-time Internal Stress of Nickel Sulfamate Electroform)

  • 김인곤;강경봉;이재근;권식철;김만;이주열
    • 한국표면공학회지
    • /
    • 제38권1호
    • /
    • pp.14-20
    • /
    • 2005
  • The control of internal stress is extremely important in electroforming because of the deliberately low adhesion between the electro form and the mandrel. Excessive tensile or compressive stress can cause distortion, separation problem, curling, peeling or separation of electroform prematurely from the mandrel, buckling and blistering. Nickel sulfamate bath has been widely used in electroforming because of its low internal stress and moderate hardness. In this study, real-time stress sensor has been used for stress control in chloride-free nickel sulfamate bath for 400 mm x 300 mm x 500 ㎛ nickel electroform. It was found that compressive stress found at low current density indicated the contamination of electrolyte, which is very useful in procuring buckling and peeling of electroform. No compressive stress is allowed for plate electroform. The real-time stress can also be used for accurate stress control of nickel electroform. The tensile stress was found to be increased slightly with increase in nickel electroform thickness, i.e., from initial 1.47 ksi to 2.02 ksi at 320 ㎛.

옥외용 실리콘 절연재료의 발수성에 미치는 표면전하의 영향과 표면 상태에 따른 표면전위 감쇠 (Effects of Surface Charges on Hydrophobicity and Surface Potential Decay with Various Surface States of Silicone Rubber for Outdoor Insulator)

  • 연복희;박충렬;허창수
    • 한국전기전자재료학회논문지
    • /
    • 제15권8호
    • /
    • pp.678-686
    • /
    • 2002
  • This paper presents the effects of accumulation of surface charges on hydrophobic level and the changes of surface potential decay with various artificial environment treatments on high temperature vulcanized (HTV) silicone rubber used for outdoor insulating material. For this study, the charging apparatus by corona discharge, in which grid electrode was installed between the main corona and ground electrode, was used. From this study, it was found that the accumulation of surface charges above a critical surface potential on silicone insulating materials could lead to the temporary loss of surface hydrophobicity. In addition, corona stress and water absorption stress increase the decay rate of surface charges of HTV silicone rubber, while ultraviolet (UV) stress causes longer decay time. We could conclude that the effects of surface charges on hydrophobicity level and the changes of surface state by various artificial treatments were found through a trend of surface potential decay.

참조응력법에 입각한 표면균열배관의 파괴역학 해석 -참조하중의 영향 분석- (Effect of Reference Loads on Fracture Mechanics Analysis of Surface Cracked Pipe Based on Reference Stress Method)

  • 심도준;손범구;김윤재;김영진
    • 대한기계학회논문집A
    • /
    • 제28권5호
    • /
    • pp.524-531
    • /
    • 2004
  • To investigate relevance of the definition of the reference stress to estimate J and $C^{*}$ for surface crack problems, this paper compares FE J and $C^{*}$ results for surface cracked pipes with those estimated according to the reference stress approach using various definitions of the reference stress. Pipes with part circumferential inner surface crack and finite internal axial crack are considered, subject to internal pressure and global bending. The crack depth and aspect ratio are systematically varied. The reference stress is defined in four different ways using (i) the local limit load, (ii) the global limit load, (iii) the global limit load determined from the FE limit analysis, and (iv) the optimized reference load. It is found that the reference stress based on the local limit load gives overall excessively conservative estimates of J and $^{*}$. Use of the global limit load clearly reduces the conservatism, compared to that of the local limit load, although it can provide sometimes non-conservative estimates of J and $^{*}$. The use of the FE global limit load gives overall non-conservative estimates of J and $^{*}$. The reference stress based on the optimised reference load gives overall accurate estimates of J and $^{*}$, compared to other definitions of the reference stress. Based on the present finding, general guidance on the choice of the reference stress for surface crack problems is given.

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.

응력비의 영향을 고려한 표면피로균열의 균열성장식 (Fatigue Crack Growth Equation considered the Effect of Stress Ratio)

  • 강용구;김대석
    • 한국해양공학회지
    • /
    • 제12권1호
    • /
    • pp.39-49
    • /
    • 1998
  • In this work, fatigue tests by axial loading were carried out to investigate the effect of stress ratio on the growth behaviors of surface fatigue crack for SM45C steel and Al 2024-T4 alloy. The growth behaviors of surface crack have been monitored during fatigue process by measuring system attached CCTV and monitor. When the growth rates of surface crack were investigate by the concept of LEFM based on Newman-Raju's .DELTA.K, the dependence of stress ratio appears both SM45C steel and Al 2024-T4 alloy. Therefore, modified stress intensity factor range, .DELTA.K' [=(1+R)/sup n/.DELTA.K] are intorduced to eliminate the dependence of stress ratio. Using .DELTA.K', it is found that the dependence of stress ratio disappears both SM45C steel and Al 2024-T4 alloy.

  • PDF

인장하중이 작용하는 평판에 존재하는 반타원 표면균열의 J-적분 계산식 (Engineering J-Integral Estimation for Semi-Elliptical Surface Cracked Plates in Tension)

  • 심도준;김윤재;최재붕;김영진
    • 대한기계학회논문집A
    • /
    • 제25권11호
    • /
    • pp.1777-1784
    • /
    • 2001
  • This paper provides d simplified engineering J estimation method fur semi-e1liptical surface cracked plates in tension, based on the reference stress approach. Note that the essential element of the reference stress approach is the plastic limit lead in the definition of the reference stress. However, for surface cracks, the definition of the limit load is ambiguous ("local" or "global"limit lead), and thus the most relevant limit load (and thus reference stress) for the J estimation should be determined. In the present work, such limit load solution is found by comparing reference stress bated J results with those from extensive 3-D finite element analyses. Validation of the proposed equation against FF J results based on tactual experimental tensile data of a 304 stainless steel shows excellent agreements not only far the J values at the deepest point but also for those at an arbitrary paint along the crack front, including at the surface point. Thus the present results provide a good engineering tool for elastic-plastic fracture analyses of surface cracked plates in tension.

큐폴라 용해로 철피의 열응력 및 피로수명 해석 (Analysis of Thermal Stress and Fatigue Life in the Steel Shell of a Cupola Furnace)

  • 양영수;배강열
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.47-54
    • /
    • 2020
  • Themo-mechanical analysis was carried out using the finite element method for the steel shell of a cupola furnace. When the outer surface of the shell was cooled with water to within the temperature range of 35-80 ℃ during operation of the cupola, the inner surface of the shell was expected to exhibit a temperature of 65-248 ℃ based on heat transfer analysis. The shell was also expected to have an equivalent stress range of 100-280 MPa in the outer surface over the temperature range examined. Upon cooling the shell to obtain an outer surface temperature <80 ℃, the maximum equivalent stress of the shell did not exceed the yield strength. Although the temperature of the outer surface varied between 35 and 80 ℃ periodically due to the cooling control problem, the fatigue stress at the outer surface of the shell was calculated to be within the fatigue strength. During a non-operational period to examine the system between furnace operations, the thermal stress presented in the shell was sufficiently low to reach the desired yield strength and fatigue limit.

Fatigue Properties of Copper Foil and the Evolution of Surface Roughness

  • Oh, Chung-Seog;Bae, Jong-Sung;Lee, Hak-Joo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권4호
    • /
    • pp.57-62
    • /
    • 2008
  • The aim of this investigation was to extract the fatigue properties at the designated fatigue life of copper foil and observe the mean stress and stress amplitude effects on both the fatigue life and the corresponding surface morphology. Tensile tests were performed to determine the baseline monotonic material properties of the proportional limit and ultimate tensile strength. Constant amplitude fatigue tests were carried out using a feedback-controlled fatigue testing machine. The mean stress and the stress amplitude were changed to obtain the complete nominal stress-life curves. An atomic force microscope was utilized to observe the relationship between the fatigue damage and the corresponding changes in surface morphology. A Basquin's exponent of-0.071 was obtained through the fatigue tests. An endurance limit of 122 MPa was inferred from a Haigh diagram. The specimen surface became rougher as the number of fatigue cycles increased, and there was a close relationship between the fatigue damage and the surface roughness evolution.

Stresses around an underground opening with sharp corners due to non-symmetrical surface load

  • Karinski, Y.S.;Yankelevsky, D.Z.;Antes, M.Y.
    • Structural Engineering and Mechanics
    • /
    • 제31권6호
    • /
    • pp.679-696
    • /
    • 2009
  • The paper aims at analyzing the stress distribution around an underground opening that is subjected to non-symmetrical surface loading with emphasis on opening shapes with sharp corners and the stress concentrations developed at these locations. The analysis is performed utilizing the BIE method coupled with the Neumann's series. In order to implement this approach, the special recurrent relations for half plane were proven and the modified Shanks transform was incorporated to accelerate the series convergence. To demonstrate the capability of the developed approach, a horseshoe shape opening with sharp corners was investigated and the location and magnitude of the maximum hoop stress was calculated. The dependence of the maximum hoop stress location on the parameters of the surface loading (degree of asymmetry, size of loaded area) and of the opening (the opening height) was studied. It was found that the absolute magnitude of the maximum hoop stress (for all possible surface loading locations) is developed at the roof points when the opening height/width ratio is relatively large or when the pressure loading area is relatively narrow (compared to the roof arch radius), and contrarily, when the opening height/width ratio is relatively small or when the surface pressure is applied to a relatively wide area, the absolute magnitude of the maximum hoop stress is developed at the bottom sharp corner points.

복합방수공법으로 구성된 반복인장시험 분석 (Analysis of Repeated Tensile Test Results Consisting of Composite Waterproof Methods)

  • 김병일;오상근;송제영
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.41-42
    • /
    • 2023
  • Test results for a total of four types of complex waterproofing methods were analyzed. In the case of the A method, the stress generated by high-viscosity compounds adhering to the base test body during the behavior of the test body was transferred to the sheet surface layer. In the case of the B method and the C method, the properties of the waterproof sheet consisting of a non-hardened seal based and a non-hardened seal are well reflected and stress absorption in the non-hardened seal layer acts strongly, rapidly reducing stress transfer to the surface of the waterproof sheet. In the case of the D method, slip occurs due to repeated behavior, and the stress on the attachment surface is reduced, and the stress transfer to the surface is greatly reduced. As a result, four types of composite waterproofing methods resulted in changing the stress transfer mechanism caused by behavior on the concrete surface due to the physical properties of the internal constituent material of the waterproof sheet.

  • PDF