• Title/Summary/Keyword: surface stress

Search Result 4,079, Processing Time 0.036 seconds

Residual Stress Analysis of AISI 304 Surface Welding Plate by 3D Finite Element Method (3 차원 유한요소법을 이용한 AISI 304 표면용접평판의 잔류응력해석)

  • Lee, Kyoung-Soo;Kim, Tae-Ryong;Kim, Maan-Won;Park, Jai-Hak
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.390-395
    • /
    • 2008
  • This study is performed to understand three dimensional characteristics of weld residual stress for the surface weld on the stainless steel plate. AISI 304 plate with one path weld on the surface was used as a test specimen. Finite element analysis was done to analyze thermal transient and residual stress due to weld. The result of finite element analysis was validated by previous paper and measurement data. Among various techniques for residual stress measurement, instrumented ball indentation method was applied. The calculated residual stresses by finite element analysis showed good agreement with the measured results.

  • PDF

Approximation Method for the Calculation of Stress Intensity Factors for the Semi-elliptical Surface Flaws on Thin-Walled Cylinder

  • Jang Chang-Heui
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.319-328
    • /
    • 2006
  • A simple approximation method for the stress intensity factor at the tip of the axial semielliptical cracks on the cylindrical vessel is developed. The approximation methods, incorporated in VINTIN (Vessel INTegrity analysis-INner flaws), utilizes the influence coefficients to calculate the stress intensity factor at the crack tip. This method has been compared with other solution methods including 3-D finite element analysis for internal pressure, cooldown, and pressurized thermal shock loading conditions. For these, 3-D finite-element analyses are performed to obtain the stress intensity factors for various surface cracks with t/R=0.1. The approximation solutions are within $\pm2.5%$ of the those of finite element analysis using symmetric model of one-forth of a vessel under pressure loading, and 1-3% higher under pressurized thermal shock condition. The analysis results confirm that the approximation method provides sufficiently accurate stress intensity factor values for the axial semi-elliptical flaws on the surface of the reactor pressure vessel.

Application of Laser Interferometry for Assessment of Surface Residual Stress by Determination of Stress-free State (무잔류 응력상태 결정을 통한 표면 잔류응력장 평가에의 레이저 간섭계 적용)

  • 김동원;이낙규;나경환;권동일
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.2
    • /
    • pp.35-40
    • /
    • 2004
  • The total relaxed stress in annealing and the thermal strain/stress were obtained from the identification of the residual stress-free state using electronic speckle pattern interferometry (ESPI). The residual stress fields in case of both single and film / substrate systems were modeled using the thermo-elastic theory and the relationship between relaxed stresses and displacements. We mapped the surface residual stress fields on the indented bulk Cu and the 0.5 $\mu\textrm{m}$ Au film by ESPI. In indented Cu, the normal and shear residual stress are distributed over -1.7 GPa to 700 MPa and -800 GPa to 600 MPa respectively around the indented point and in deposited Au film on Si wafer, the tensile residual stress is uniformly distributed on the Au film from 500 MPa to 800 MPa. Also we measured the residual stress by the x-ray diffractometer (XRD) for the verification of above residual stress results by ESPI...

  • PDF

The added carbon effect on residual stress in ion-nitriding (ION질화에 있어 첨가 탄소량이 잔류응력에 미치는 영향)

  • 김희송;강명순
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.35-46
    • /
    • 1982
  • This paper deals with residual stress characteristics of ion-nitrided metal which is primarilly concerned with the effects of added carbon content in gas atmosphere. A small optimal amount of carbon content in gas atmosphere increase compound layer thickness, as well as to increase diffusion layer thickness and hardness. The residual stress and deflection of the specimens was measured in various elevated temperature at the surface of ion-nitrided metal and the internal stress distribution was calculated. It is found that compressive residual stress at the compound layer is largest at the compound layer, and decreases as the depth from the surface increases.

  • PDF

Vibration analysis of inhomogeneous nonlocal beams via a modified couple stress theory incorporating surface effects

  • Ebrahimi, Farzad;Safarpour, Hamed
    • Wind and Structures
    • /
    • v.27 no.6
    • /
    • pp.431-438
    • /
    • 2018
  • This paper presents a free vibration analysis of size-dependent functionally graded (FG) nanobeams with all surface effects considerations on the basis of modified couple stress theory. The material properties of FG nanobeam are assumed to vary according to power law distribution. Based on the Euler-Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton's principle. An analytical method is used to discretize the model and the equation of motion. The model is validated by comparing the benchmark results with the obtained results. Results show that the vibration behavior of a nanobeam is significantly influenced by surface density, surface tension and surface elasticity. Also, it is shown that by increasing the beam size, influence of surface effect reduces to zero, and the natural frequency tends to its classical value.

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Design of Reduced Shear Stress with High-Viscosity Flow Using Characteristics of Thin Film Flow on Solid Surfaces (완전접촉 경계면 위의 박막유동 특성을 이용한 고점도 전단유동에 따른 표면응력 감소 설계)

  • Park, Boo Seong;Kim, Bo Hung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.12
    • /
    • pp.1027-1034
    • /
    • 2014
  • The shear stress on a surface due to the thin film fluid flow is an important issue. In case of a rotating disk, the fluid is delivered to the edge of the disk by centrifugal force, which acts as a body force on the fluid. Wear of a surface is affected by the shear stress acting on the surface and curvature. In this study, we utilize computational fluid dynamics software to model the ratio of curvature and local shear stress on solid surfaces. The key goal of the study is to determine an optimized curvature for the thin film fluid flow on a solid surface in order to minimize the local shear stress affecting the wear of this surface. Our results on the effects of curvature will be utilized for the design of devices that utilize thin film fluid flow on a solid surface, such as rotating-disk spray systems and thin film coating.

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로수명에 미치는 압축잔류응력의 영향)

  • Park, Keyoung-Dong;Jung, Chan-Gi
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.281-287
    • /
    • 2002
  • Nowadays, many components used in machinery industry is required lightness and high strength. Therefore, the effects of compressive residual stress by shot-peening which is method to improve fatigue lift of spring steel (JISG SUP-9), which used in suspension of automobile, on fatigue crack growth characteristics was investigated with considering fracture mechanics. So, we can obtain followings 1. The fatigue crack growth rate on stage II is conspicuous with the size of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, fatigue life does not improve than when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

  • PDF

The Effect of Compressive Residual Stress on The Fatigue life in Spring Steel for vehicles (차량용 스프링강의 피로균열진전에 미치는 압축잔류응력의 영향)

  • 박경동;하경준;박형동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.82-90
    • /
    • 2003
  • Nowadays, many components used in machinery industry is required lightness and high strength. The shot-peening method is used in order to improve the fatigue life of spring steel(JIS G SUP-9) which is used in suspension of automobile. The compressive residual is induced in this shot-peening process. This paper investigated the effect of the residual compressive stress on the fatigue crack growth characteristics. Main results are summarized as follows. 1. The fatigue crack growth rate on stage II is conspicuous with the level of compressive residual stress and is dependent on Paris equation. 2. Although the maximum compressive residual stress is deeply and widely formed from surface, it does not improve the fatigue life comparing when maximum compressive residual stress is formed in surface. 3. The threshold stress intensity factor range is increased with increasing compressive residual stress. 4. In fracture surface of fatigue crack growth it is investigated that compressive residual stress remarkably retards fatigue crack growth.

Study on the Analysis of Wear Phenomena of Ion-Nitrided Steel (이온질화 처리강의 마모현상 분석에 관한 연구)

  • Cho, Kyu-Sik
    • Tribology and Lubricants
    • /
    • v.13 no.1
    • /
    • pp.42-52
    • /
    • 1997
  • This paper deals with wear characteristics of ion-nitrided metal theoretically and experimentally in order to analysis of wear phenomena. Wear tests show that compound layer of ion-nitrided metal reduces wear rate when the applied wear load is mall. However, as th load becomes large, the existence of compound layer tends to increase wear rate. The residual stress at the surface of ion-nitrided metal is measured, and the internal stress distribution is calculated when the normal and tangential forces are applied to the surface of metal. Compressive residual stress is largeest at the compound layer, and decreases as the depth from the surface increases. Calculation shows that the maximum stress exists at a certain depth from the surface when normal and tangential force are applied, and that the larger the wear load is the deeper the location of maximum stress becomes. In the analysis, it is found that under small applied wear load the critical depth, where voids and cracks may be created and propagated, is located at the compound layer, as the adhesive wear, where hardness is an important factor, is created the existence of compound layer reduces the amount of wear. When the load becomes large the critical depth is located below the compound layer, and delamination, which may be explained by surface deformation, crack nucleation and propagation, is created, and the existence of compound layer increases wear rate.