• Title/Summary/Keyword: surface stability

Search Result 3,602, Processing Time 0.035 seconds

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part II

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.96-102
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane headgroups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study directly observed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To observe this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various stress conditions and force profiles in pure water were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in pure water, there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. In particular, the protrusion behavior of the monolayer during contact repetition experiment was always observed in the untreated case, but never in the plasma treated case. It directly demonstrates that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

Superb Mechanical Stability of n-Octadecyltriethoxysilane Monolayer Due to Direct Chemical Bonds between Silane Headgroups and Mica Surface: Part I

  • Kim, Sungsoo
    • Journal of Integrative Natural Science
    • /
    • v.3 no.2
    • /
    • pp.89-95
    • /
    • 2010
  • It is still controversial where the improved stability of n-octadecyltriethoxysilane self-assembled monolayer (OTE SAM) on plasma-pretreated mica surface exactly originates from. To date, it has been well known that the extensive cross-polymerization between silane head-groups is a crucial factor for the outstanding mechanical strength of the monolayer. However, this study clearly showed that the stability comes not only from the cross-links but also, far more importantly, from the direct chemical bonds between silane headgroups and mica surface. To examine this phenomenon, n-octadecyltrichlorosilane monolayers were self-assembled on both untreated and plasma treated mica surfaces, and their adhesion properties at various physical conditions (relative humidity, high stress, and contact repetition) were investigated and compared through the use of the surface forces apparatus technique. It revealed that, in highly humid conditions (>90%RH), there is a substantial difference of stability between untreated and plasma treated cases and the plasma treated surface is mechanically much more stable. It obviously proves that the extensive chemical bonds indeed exist between silane head-groups and plasma treated mica surface and dramatically improve the mechanical stability of the OTE monolayer-coated mica substrate.

The Study on the Surface Properties of Concrete Tile According to the Autoclave Curing (오토클레이브 양생에 따른 콘크리트 마감재의 표면특성에 관한 연구)

  • Choi Sun-Mi;Jung Ji-Yong;Jung Eun-Hye;Kawg Eun-Gu;Kim Jin-man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.77-80
    • /
    • 2005
  • The surface of concrete tiles is weak in moisture that it occurrenced efflorescence, but in the former study we found that it is possible to ensure moisture stability of concrete surface by autoclaving. So this study is to discuss the moisture stability and Physical Properties of high-strength glossy concrete according to time and temperature of autoclave curing. As the results, by increasing time and temperature of autoclave curing, compressive strength and surface hardness increased and glossiness decreased. In the case to 3 hour and $180^{\circ}C$ of autoclave curing, there is not effloescences in mosture stability test.

  • PDF

A Study on the Characteristics of Inversion Layer Observed at Kimhae (김해에서 관측한 접지역전층의 특성에 관한 연구)

  • 박종길;원경미
    • Journal of Environmental Science International
    • /
    • v.3 no.4
    • /
    • pp.305-315
    • /
    • 1994
  • The field observation was carried out to investigate the characteristics of surface inversion layer at Kimhae using the feild observed date and upper layer meteorological data during 4-5 February 1993. The results of the study can be summarized as follows : The maximum height of surface inversion layer observed at Kimhae is 193m and the height of upper level inversion layer ranges from 2nm to 300m. The surface weather elements was influenced the formation of surface inversion layer. According to the pasquill stability and time variation of temperature with height, both the surface heating from insolation and the disturbance of upper level of inversion layer was influenced the disappearance of inversion layer. And the stability of surface temperature inversion layer generally belongs to the class of F, that of upper level temperature inversion layer commonly to the class of E.

  • PDF

The Study on the Engineering Properties of High-Strength Glossy Concrete Tiles Using Waste Concrete Powders (재생 미분말을 적용한 고강도 광택 콘크리트 마감재의 공학적 특성에 관한 연구)

  • Choi Sun Mi;Jung Ji Yong;Jung Eun Hye;Kim Jin Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.465-468
    • /
    • 2005
  • This Study is concerned workability and the physical properties for practical use of waste concrete powder originated from the manufacturing progress of waste concrete aggregate and it apply to concrete tile. Also because it is important that concrete tile has to ensure the surface moisture stability, for solving the problems aplied curing method is air-dried and autoclave curing. As the result, the physical properties, such as fluent properties, compressive strength, surface hardness and surface glossiness, were decreased with increase of replacement ratio of waste concrete powder, also surface stability was weaked about moisture. But by autoclave curing, it is possible that compressive strength and surface hardness increased, and surface moisture stability is ensured.

  • PDF

Surface Potential Behavior of Nano $CeO_2$ Particles in Aqueous Media (수계분산매체에서 나노 $CeO_2$ 입자의 계면전위 거동)

  • 이태원;백운규;최성철;이상훈;임형섭;김철진
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.721-725
    • /
    • 2000
  • In this study, the dispersion stability of nano-sized CeO2 particles, synthesized by hydrothermal method in aqueous was evaluated from observing the surface potential behavior of CeO2 particle synthesized by solid state reaction. The isoelectric point(IEP) of nano-sized CeO2 synthesized by hydrothermal synthesis was found to be pH 9 contrary to the isoelectric point of micro-sized CeO2 synthesized by solid state reaction at pH 6.7. IEP was shifted to pH 2.0 as the addition of D-3019 from 0.1 to 1.0 wt%. The surface potential of CeO2 particles synthesized by hydrothermal synthesis was reduced as the addition of B-1001 used as a binder without change of IEP because the absorption of B-1001 polymer on the CeO2 particles shifted the shear plane of CeO2 particles outward away from the surface. This surface potential behavior was well correlated with the dispersion stability of slurry.

  • PDF

Influence of undercut and surface crack on the stability of a vertical escarpment

  • Banerjee, Sounik K.;Chakraborty, Debarghya
    • Geomechanics and Engineering
    • /
    • v.12 no.6
    • /
    • pp.965-981
    • /
    • 2017
  • Stability of vertical escarpments has been the subject of discussion for long time. However, available literature provides scarce knowledge about the effect of the formation of undercut and surface cracks on the stability of a vertical escarpment. The present study deals with a systematic analysis of the effect of surface cracks and undercut on slope stability using finite element based lower bound limit analysis. In the present analysis, the non-dimensional stability factor (${\gamma}H/c$) is used to inspect the degrading effect of undercut and cracks developed at different offset distances from the edge of the vertical escarpment. Failure patterns are also studied in detail to understand the extent and the type of failure zone which may generate during the state of collapse.

A Study on Aircraft Flight Stability of T-50 Control Surface Reconfiguration Mode in PA Configuration (T-50 착륙외장 형상에서 조종면 형상 재구성 모드의 항공기 비행)

  • Kim, Jong-Seop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.93-100
    • /
    • 2006
  • Modern versions of supersonic jet fighter aircraft using a digital flight-by-wire flight control system design utilizes a control surface reconfiguration in order to guarantee the aircraft flight stability when a control surface is failed. The T-50 flight control laws are designed such that the surface reconfiguration mode controls the aircraft using non-failed control surfaces when one of the control surfaces is failed. In this paper, linear analysis and HQS(Handling Quality Simulator) pilot simulations are performed to analyze the flight stability and handling quality when the surface reconfiguration mode is engaged for aircraft landing configuration. It is found that the aircraft flight stability and handling quality is satisfied to level 1 requirements when the T-50 flight control law is changed to the surface reconfiguration mode.

The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water (순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성)

  • Hwang, Y.K.;Jang, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF