• 제목/요약/키워드: surface skin temperature

검색결과 227건 처리시간 0.028초

신경전도와 근전도검사에서의 체온 (Temperature in Nerve Conduction and Electromyography)

  • 김두응
    • Annals of Clinical Neurophysiology
    • /
    • 제8권2호
    • /
    • pp.125-134
    • /
    • 2006
  • Among the various physiological factors that affect nerve conduction velocity (NCV), temperature is the most important. Because the influence of temperature is the most important source of error. It is known from animal experiments that conduction is eventually completely blocked at low temperatures, the myelinated A fibers being the first affected and the thin fibers of group C the last. Many studies showed that the NCV decreases linearly with lowering temperature within the physiological range. The distal motor latency increased by $0.2msec/^{\circ}C$ drop in temperature between $25^{\circ}C$and $35^{\circ}C$ in the median, ulnar and peroneal nerves. The temperature affect the neuromuscular transmission; The miniature endplate potential (MEPP) and endplate potential (EPP) are increase with increasing temperature. In myasthenia gravis, the reduction in the decremental response is observed following cooling. The lowering temperature make increase the amplitude of sensory compound action potential; make enlarge the surface area of compound muscle action potential with very little increase in amplitude; make diminish the fibrillation potential and increase the myotonia in needle electromyography (EMG). Because of these findings mentioned above, the skin temperature should be routinely monitored and controlled during nerve conduction tests and needle EMG and should be taken into account when interpreting the findings.

  • PDF

향한기의 표의훈련이 피하지방두께에 미치는 영향 (Effect on the Subcutaneous Fat Thickness of the clothing Training in the Cold Condition)

  • 박승순;이원자
    • 한국의류학회지
    • /
    • 제23권4호
    • /
    • pp.551-562
    • /
    • 1999
  • This study was intended to investigate the effect on the human body such as subcutaneous fat thickness the circumference of extremities etc. of the clothing training of putting on thin clothes periodically from the cold period. The subjects were divided into the clothing training group and the non-training group, The training group was asked to wear cool clothes in daily life and to wear the training clothes of T-shirts with half-length sleeves and pants and perform the clothing training for two hours daily three times a week in a cold environment over the period from November to February. The non-training group was asked to lead a life wearing comfortable clothes. Then a comparative experiment was conducted at 15$\pm$1$^{\circ}C$, 50$\pm$5% R, H and 0.25m/sec before and after the clothing training. After the clothing training regardless of gender subcutaneous fat thickness was more increased and total clothing weight per the surface area of the body was decreased in the training group than the non-training group. The training group showed lower skin temperature in the limbs and lower average skin temperature than the non-training group irrespective of gender which proved the effect of the clothing training. The training group was shown to have attendancy toward a greater sense of warmth and a less sense of discomfort which proved the effect of the clothing training.

  • PDF

후천성면역결핍증후군 환자에서의 저온 접촉 화상에 의한 삼도 화상의 치료 (Treatment of Third Degree Burn due to Low-Temperature Contact Burn on Acquired Immune Deficiency Syndrome (AIDS) Patient: Low-Temperature Burn on AIDS Patient)

  • 홍석원;최환준;김준혁;이다운
    • 대한화상학회지
    • /
    • 제22권2호
    • /
    • pp.21-24
    • /
    • 2019
  • Incidence of low-temperature contact burn by use of an electric pad is increased recently, especially in depressed sensory. Acquired immune deficiency syndrome patient using antiretroviral agent suffered with sensory depression as side effect. There are many limitations in wounds treatment of these patients. These patients are vulnerable to infection due to their weak immunity, so it is necessary to keep them in a state of isolation when a wound occurs. We report a case of a third degree burn by electric pad with a surface area of approximately 5% of the body surface of a patient who underwent a sensory depression, which is a side effect of antiretroviral drugs used for treatment in patients with AIDS. In this regard, we report the case with literature review, which is safely recovered using negative-pressure wound therapy and split-thickness skin graft.

Performance Analysis of the GPS Antenna for Satellite Launch Vehicles under the Hot -Temperature Environment

  • Moon, Ji-Hyeon;Kwon, Byung-Moon;Choi, Hyung-Don
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2006년도 International Symposium on GPS/GNSS Vol.2
    • /
    • pp.273-278
    • /
    • 2006
  • In order to use a GPS antenna for launch vehicles, it should be installed on the skin of the vehicle and be able to normally receive the live GPS signals during the vehicle's full flight mission. The GPS antenna on the surface of the launch vehicle is, however, exposed to higher temperature than inner equipments of the vehicle due to aerodynamic heating generated during the flight. Test specification of the GPS antenna for qualification of hot-temperature is determined to $+95^{\circ}C$ that is higher than inner components by $25^{\circ}C$. Test results in this paper show that the GPS antenna normally operates under the above environment.

  • PDF

여름철 온돌에서 취침시 이불종류에 따른 침상기후와 인체반응 연구 (A Study on Bedclimate, Physiological Responces and Subjective Sensations of Bedquilts During Sleeping on Ondol in Summer)

  • 권수애;이순원;최정화
    • 한국의류학회지
    • /
    • 제16권3호
    • /
    • pp.285-298
    • /
    • 1992
  • In this study, bedclimate was investigated depending on various bedquilts used oin ondol in summer. The environmental room condition was maintained at 26: $1^{\circ}C,\;75{\pm}3\%$ R.H., while the ondol surface was kept at $25{\pm}1^{\circ}C$ without heating. The types of bedquilts were hemp, cotton, quilt made of polyester padding with polyester/cotton cover. Two healthy young women were subjected for seven hours' sleep with two replications for this study. The results are as follows. 1) The range of the temperature under the mattress ($25.2\~32.4^{\circ}C$) was lower than that of the temperature on the mattress ($28.8\~35.5^{\circ}C$), or that of the temperature inside the bedquilts ($30.3\~34.4^{\circ}C$). The humidity inside the bedquilts increased during sleeping, and the range of R.H. was $58\~80\%$. 2) The ranges of bedclimate which subjects feel comfortable were $30.5\~33.8^{\circ}C$ on the mattress, $31.0\~34.9^{\circ}C$, $61\~74\%$ R.H. inside the bedquilts. At this range, the mean skin temper-ature of the subjects was $34.3^{\circ}C\~35.2^{\circ}C$. 3) When there was no heating, the weight of the bedding increased during sleeping, and the weight increase was largest in the case of mattress. 4) There were correlations among the skin temperature of three points of the body (abdomen, thigh, foot) and the temperature and R.H. inside the bedquilt. 5) The effect of the type of bedquilts on the microclimate and physiolosical responses were significant. 6) Generally, when there was no heating, the body heat was transferred to the ondol floor, in summer, heat was transferred mostly through the mattress.

  • PDF

휴대폰 전파인 인제 흡수전력량과 온도 상승량 산출 (Computation of Temperature Rising by Absorbed Power Radiated from a Portable Phone)

  • 이승학;김채영;강승진
    • 한국전자파학회논문지
    • /
    • 제12권3호
    • /
    • pp.409-426
    • /
    • 2001
  • 본 논문은 유한차분 시간영역 해석법(Finite-Difference Time-Domain Method)을 사용하여 900 MHz용 휴대폰으로부터 방출된 전파의 인체 두부(頭部)에 흡수된 전력량을 산출하였고, 흡수전력으로 인한 두부내의 온도 상승량을 계산하였다. 이를 위하여 인체두부를 5층 매질로 모델링하였고, 휴대폰은 금속상자에 부착된 모노폴안테나로 모델링하였다. 모델링에 사용된 인체두부와 휴대폰의 크기는 상용의 값을 사용하였다. 사용된 모노폴 안테나의 길이는 8.16 cm이고, 휴대폰의 출력은 상용 900 MHz의 600 mW을 사용하였다. 설정된 모델링하에서 인체의 위해(危害)정도를 알려주는 지수는 1 g, 10 g 평균 北 흡수율(SAR-Specific Absorption Rate)의 분포를 계산하였고 이에 따른 1g, 10 g 평균 온도 상승량을 계산하였다. 그 결과 비흡수율이 최대가 되는 지점은 인체 두부의 피부 부분이었고 최대 온도 증가 위치는 이보다 안쪽부분에서 나타났다. 인체 두부와 휴대폰의 이격거리에 따른 SAR과 온돈 상승량을 계산하였다.

  • PDF

초음파 가열 시 In Vitro 및 In Vivo에서 Microwave Radio-Thermometer와 탐침온도계의 일치도 (In Vitro and In Vivo Agreement of Microwave Radio-Thermometer and Needle Probe Thermometer During Therapeutic Ultrasound)

  • 이수영;조상현;이충휘;김종만
    • 한국전문물리치료학회지
    • /
    • 제10권1호
    • /
    • pp.15-27
    • /
    • 2003
  • Therapeutic ultrasound is commonly applied for deep heating in physical therapy setting. However, it is difficult to determine the exact application dosage and to confirm the immediate heating effect. Microwave Radio-Thermometer (MRT) can measure the temperature by the electromagnetic energy in the microwave region of the object that emits above absolute zero temperature. MRT was used for early diagnosis of breast cancer since it was not harmful, non-invasive, and non-ionizing to the human body. The purposes of this study were to investigate how accurately 1.1 GHz RTM (RES Ltd. Russia) measures the change of average temperature in the tissue, and to determine the depth of temperature change measurement. Therapeutic ultrasound was applied (continuous wave for 5 minutes, 1 MHz, intensity of 1.5 $W/cm^2$ [in vitro] and 1.0 $W/cm^2$ [in vivo]) in four different conditions: (1) 30 cases of in vitro specimen of pork, (2) 30 cases of in vitro specimen of pork ankle joint, (3) 10 cases of in vivo canine thigh, and (4) 30 cases of in vivo human body. Intraclass Correlation Coeffients (ICC[3,1]) between average needle probe thermometer below surface and MRT temperature was revealed as followed: (1) Before ultrasound application ICCs ranges above .8 in specimen of pork (15 mm underneath the skin) and above .82 in specimen of pork ankle joint (10~30 mm underneath the skin). (2) After ultrasound application ICCs ranges above .7 in both specimens of pork and pork ankle joint. (3) Before ultrasound application ICCs ranges above .8 in canine thigh (20 mm underneath the skin). (4) After ultrasound application ICCs ranges above .82 in canine thigh. The temperature of the human body increased significantly with the mean of $15^{\circ}C$ in muscle tissue and with the mean of $3.5^{\circ}C$ in joint (p<.00). It was revealed that the average depth of temperature measurement of the tissue by MRT was in between 10 and 35 mm, and determined that the proper temperature measurement band was $36.5{\sim}37.0^{\circ}C$.

  • PDF

An Image Quality Evaluation Model for Optical Strip Signal-to-Noise Ratio in the Target Area of High Temperature Forgings

  • Ma, Hongtao;Zhao, Yuyang;Feng, Yiran;Lee, Eung-Joo;Tao, Xueheng
    • Journal of Multimedia Information System
    • /
    • 제8권2호
    • /
    • pp.93-100
    • /
    • 2021
  • Under the time-varying temperature, the high-temperature radiation of forgings and the change of reflection characteristics of oxide skin on the surface of forgings lead to the difficulty of obtaining images to truly reflect the geometric characteristics of forgings. It is urgent to study the clear and reliable acquisition method of hot forging feature image under time-varying temperature to meet the requirements of visual measurement of hot geometric parameters of forgings. Based on this, this chapter first puts forward the quality evaluation method of forging feature image, which provides guarantee for the accurate evaluation of feature image quality. Furthermore, the factors that affect the image quality, such as the radiation characteristics of forgings and the photographic characteristics of cameras, are analyzed, and the imaging spectrum which can effectively suppress the radiation intensity of forgings is determined. Finally, aiming at the problem that the quality of image acquisition is difficult to guarantee due to the drastic change of radiation intensity of forgings under time-varying temperature, an image acquisition method based on minimum signal-to-noise ratio (SNR) based laser light intensity adaptation is proposed, which significantly improves the definition of feature light strips in forging images at high temperature, and finally realizes the clear acquisition of feature images of large-scale hot forging under time-varying temperature.

저온 플라즈마를 이용한 피부치료기 개발에 관한 연구 (Development of the Skin Treatment Unit using Low Temperature Plasma)

  • 송광현;고윤석;이우철
    • 한국전자통신학회논문지
    • /
    • 제9권12호
    • /
    • pp.1427-1434
    • /
    • 2014
  • 의료기기중 체외에서 인체로 물리적 에너지를 가하거나 그 의료기기의 에너지를 이용하여 인체의 화학적 변화를 이용하여 치료를 하는 것은 고도의 신뢰성과 안정성이 요구된다. 특히 인체의 모든 부분 중 가장 외부로 노출되어있는 피부에 대한 치료는 매우 중요 하다고 할 것이다. 이러한 관점에서 보았을 때 피부 치료 시 발생 할 수 있는 모든 위험 요소를 줄이고 치료의 효과를 극대화 할 수 있는 장비의 개발은 높은 치료 효과와 안전성 확보를 위하여 반드시 필요하다고 할 것이다.

난방시스템 및 개구부의 통합제어를 위한 규칙기반제어법 및 인공신경망기반제어법의 성능비교 (Development of Integrated Control Methods for the Heating Device and Surface Openings based on the Performance Tests of the Rule-Based and Artificial-Neural-Network-Based Control Logics)

  • 문진우
    • KIEAE Journal
    • /
    • 제14권3호
    • /
    • pp.97-103
    • /
    • 2014
  • This study aimed at developing integrated logic for controlling heating device and openings of the double skin facade buildings. Two major logics were developed-rule-based control logic and artificial neural network based control logic. The rule based logic represented the widely applied conventional method while the artificial neural network based logic meant the optimal method. Applying the optimal method, the predictive and adaptive controls were feasible for supplying the advanced thermal indoor environment. Comparative performance tests were conducted using the numerical computer simulation tools such as MATLAB (Matrix Laboratory) and TRNSYS (Transient Systems Simulation). Analysis on the test results in the test module revealed that the artificial neural network-based control logics provided more comfortable and stable temperature conditions based on the optimal control of the heating device and opening conditions of the double skin facades. However, the amount of heat supply to the indoor space by the optimal method was increased for the better thermal conditioning. The number of on/off moments of the heating device, on the other hand, was significantly reduced. Therefore, the optimal logic is expected to beneficial to create more comfortable thermal environment and to potentially prevent system degradation.