• Title/Summary/Keyword: surface sediments texture

Search Result 19, Processing Time 0.02 seconds

Seasonal Variation of Surface Sediments in the Myeongsasipri Tidal Flat, Gochanggun, SW Korea (고창군 명사십리 조간대 표층 퇴적물의 계절 변화)

  • So, Kwang-Suk;Ryang, Woo-Hun;Kwon, Yi-Kyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.3
    • /
    • pp.181-188
    • /
    • 2009
  • The macro tidal flat of the Gochanggun Myongsasipri, located on the southwestern coast of Korea, is studied in terms of seasonal variations of surface sediment and sedimentary environment. Surface sediments of 45 sites in the winter (February) and the summer (August) are sampled across three survey lines (15 sites in each survey line), respectively. The tidal flat of open-coast Myongsasipri is mainly composed of fine to medium sand, the distribution of which shows a coast-parallel trend. Grain-size distribution has a bi-modal trend, and grain size in the winter is coarser than that in the summer. During the winter, the upper tidal flat is dominated by medium sand, while the lower tidal flat is dominated by find sand. Such a feature is attributed to wave-dominated sedimentation in the winter. The finer grains of the summer rather than that of the winter and relationship between texture parameters suggest that tidal energy plays an important role in tidal-flat sedimentation during the summer. This study represents an environmental change from wave-dominated conditions in the winter to tide-dominated conditions in the summer as a result of the seasonal variation in the intensity of onshore-directed winds and waves in the Myongsasipri tidal flat.

Topographical Changes and Textural Characteristics in the Areas Around the Saemangeum Dyke (새만금방조제 축조에 따른 지형 및 입도특성의 변화)

  • Lee, Hee-Jun;Jo, Hyung-Rae;Kim, Min-Ji
    • Ocean and Polar Research
    • /
    • v.28 no.3
    • /
    • pp.293-303
    • /
    • 2006
  • The topography of the sea floor and textural characteristics of surface sediments are documented in areas off sectors 1,2, and 4 of the Saemangeum dyke and inside the dyke. These were investigated during the years 2002 to 2005, when the dyke construction almost came to an end, and were compared with natural topographic analogs before the dyke construction from the maritime maps of 1982 and 1994. Along and across the dyke are a number of erosional troughs formed by intensified currents during the dyke construction. The sea floor off sector 4 has undergone gradual accumulation of sands moving from the north by currents varying in direction from normal to parallel to the dyke. This is in a strong contrast with a slight erosional environment prevailing over the sea floor before dyke construction. off sectors 1 and 2, a topography with an alterative pattern of erosional troughs and sand shoals develops normal to the dyke. Eroded materials from the troughs seem to have added to the sand shoals. As a result, the troughs, former natural tidal channels, have become increasingly deeper, whereas the sand shoals have become somewhat shallower. The sea floor inside the dyke has also been remarkably shallower with expanding tidal flats due to trapping by the dyke of continuous sediment input from the Dongjin and Mangyeong rivers. Sands, all of which are considered to have originated originally from the two rivers, dominate the entire Saemangeum area.

Environment of Deposition and Characters of Surface Sediments in the Nearshore off Byun-San Peninsula, Korea (변산반도 연근해 표층 퇴적물의 특성과 퇴적환경)

  • Oh, Jae-Kyung;Choi, Kyu-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.2
    • /
    • pp.107-116
    • /
    • 1999
  • To study the characters of surface sediment and to describe the seasonal depositional environment as a result of sedimentation process off Byun-San Peninsula, a total 61 samples of surface sediment (32 samples in summer; 29 samples in winter) were collected and analysed. A digitized depth data from sea chart and echosounding profiles along five trans-sections were helpful for understanding the morphological factors. The types classified by the characters of surface sediment are type I (sand, S), type II (silty sand, zS), and type ill (sandy silt, sZ). Mean grain size varies from 2.11 to 7.81 ${\Phi}$. The positive-skewness shows the typical tide-dominated environment. The sediment type of the northwestern stations is medium sand and the sorting value is 0.5~1.4 ${\Phi}$ of well/moderately sorted. Meanwhile, other stations are composed of muddy sands and sandy muds transported from rivers and offshore. These sediment types toward inshore change gradually from silty sand to sandy silt. According to the C/M diagram, there are three major transport modes of sediment: bed load (Mode A), graded suspension (Mode B), and suspension (Mode C), correlating with north-eastern sandy area, middle part of silty-sand area, and southern sandy-silt area, respectively. The result of Principal Component Analysis shows also similar pattern of sediment types. In result, sediment texture of type III tends to be finer and more poorly-sorted than that of type II and sediment facies are correlateed with sedimentation process.

  • PDF

Geoacoustic Model of Surface Sediments in the East of Geoje Island, the South Sea of Korea (거제도 동쪽 해역 표층 퇴적물의 지음향모델)

  • KIM, GIL YOUNG;KIM, DAE CHOUL;SHIN, BO KYOUNG;SEO, YOYUNG KYO;LEE, GWANG HOON
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.2
    • /
    • pp.129-138
    • /
    • 2005
  • Sediment texture, physical (porosity, water content, bulk density, grain density, and shear strength), and geoacoustic properties (compressional wave velocity and attenuation) were measured on eighteen core samples collected from the shelf off eastern Geoje Island, the South Sea of Korea. Based on these properties, the study area is divided into three different sub-areas: (1) Area I affected directly by the Nakdong River discharge; (2) Area II covered by the southern branch of the Nakdong River discharge; and (3) Area III dominated by relict sediment. Mean grain size, velocity, and bulk density decrease from Area $I(7.4\Phi,\;1528m/s,\;1.6g/cm^3,\;respectively)$ to Area $II(8.1\Phi,\;1485m/s,\;and\;1.5g/cm^3)$, and then increase rather rapidly in Area $III(1.4\Phi,\;1664m/s,\;and\;2.2g/cm^3)$. Porosity, on the other hand, exhibits an opposite trend, increasing from Area $I(64.5\%)$ to Area$II(73.9\%)$ and then decreasing significantly in Area $III(32.9\%)$ From the results measured and calculated, we suggest a specified geoacoustic model in the study area.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Characteristics and Formation conditions of the Rhodoliths in Wu Island beach, Jeju-do, Korea: Preliminary Report (제주도 우도의 홍조단괴 해빈 퇴적물의 특징과 형성조건 : 예비연구 결과)

  • 김진경;우경식;강순석
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 2003
  • Three beaches of the Seogwang-ri coast in the western part of Wu Island, Jeju-do, are solely composed of rhodoliths (red algal nodules). The beach sediments are coarse sand to granule in size and they show the banded distribution according to size. Commonly the larger pebble-sized rhodoliths are concentrated near the rocky coast, resulting from the transportation of the nodules from shallow marine environments by intermittent typhoons. Based on the internal texture of the rhodoliths, it appears that crustose red algae, Lithophyllum sp., is the main contributor for the formation of the rhodolith. The coarse sand to granule-sized grains show that they started to grow from the nucleus as rhodoliths, but the surface was severely eroded by waves. However, the pebble to cobble-sized grains exhibit the complete growth pattern of rhodoliths and sometimes contain other calcareous skeletons. It is common that encrusting red algae are intergrown with encrusting bryozoan. The surface morphology of rhodolith tends to change from the concentric to domal shape towards the outer part. This suggests that the rhodolith grew to a certain stage by rolling, but it grew in more quiet condition without rolling as it became larger. Aragonite and calcite cements can be found in the pores within rhodoliths (conceptacle, intraskeletal pore in bryozoan, and boring), and this means that shallow marine cementation has occurred during their growth. Growth of numerous rhodoliths in shallow marine environment near the Seogwang-ri coast indicates that this area has suitable oceanographic conditions for their growth such as warm water temperature (about 19$^{\circ}C$ in average) and clear water condition due to the lack of terrestrial input of volcanoclastic sediments. Fast tidal current and high wave energy in the shallow water setting can provide suitable conditions enough for their rolling and growth. Typhoons passing this area every summer also influence on the growth of rhodoliths.

Late Quaternary Stratigraphy of the Tidal Deposits In the Hampyung Bay, southwest coast of Korea (한국 서남해 함평만 조간대 퇴적층의 제4기 후기 층서 연구)

  • Park, Yong-Ahn;Lim, Dhong-Il;Choi, Jin-Yong;Lee, Young-Gil
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.2 no.2
    • /
    • pp.138-150
    • /
    • 1997
  • The late Quaternary stratigraphy of the tidal deposits in the Hampyung Bay, southwestern coast of Korea comprises 1) Unit III (nonmarine fluvial coarse-grained sediments), 2) Unit II (late Pleistocene tidal deposits), and 3) Unit I (late Holocene fine-grained tidal deposits) in ascending order. The basements of the Hampyung Bay is composed of granitic rocks and basic dyke rocks. These three units are of unconformally bounded sedimentary sequences. The sequence boundary between Unit I and Unit II, in particular, seems to be significant suggesting erosional surface and exposed to the air under the cold climate during the LGM. The uppermost stratigraphic sequence (Unit I) is a common tidal deposit formed under the transgression to highstand sea-level during the middle to late Holocene.

  • PDF

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

Characteristics of Non-Spherical Manganese Nodule from the East Siberian Sea (동시베리아해 비구형 망가니즈단괴의 특성)

  • Koo, HyoJin;Park, MuSeong;Seo, ChoongMan;Cho, HyenGoo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.241-253
    • /
    • 2021
  • Manganese nodules have been found in the shallow water depth of the Arctic Ocean as well as in the abyssal plains of the Pacific and Indian Oceans, but detailed study for them were rarely investigated. Manganese nodules, collected from the East Siberian Sea through the Arctic Expedition using Araon ice braking vessel, have a high potential for Mn mineral resources because they have high Mn content with high Mn/Fe ratio. This study investigated the external form, size and weight, internal texture for the non-spherical manganese nodule, which has about 7 % of total nodule from the East Siberian Sea. This study also researched the relative Mn-oxide mineral composition using the peak area ratio of X-ray diffraction pattern and their chemical composition. All data obtained from non-spherical nodules were compared with the spherical ones. Ellipsoidal, platy and irregular types are common among 5 groups of non-spherical manganese nodule based on the external form, and major axis and weight have positive relationship. All non-spherical manganese nodules have core mainly composed of mud sediments. The average Mn oxide mineral contents in nodules are birnessite, buserite and todorokite in descending order. Although mineral composition does not show any correlation with the external form, kind of core or internal structure, todorokite and buserite contents tend to increase and birnessite content decrease from the surface to the core in the nodule. Non-spherical manganese nodules have higher Mn content and Mn/Fe ratio than those from the shallow water depth of the Arctic Sea and even in the deep-sea of the Pacific and Indian Ocean. Although non-spherical nodule is larger and heavier, and has lower Mn content and Mn/Fe ratio than spherical nodule, there are not any differences in mineral composition and internal structure between them. Almost all manganese nodules collected from the East Siberian Sea are attributed to diagenetic process, because they are higher than 5 in Mn/Fe ratio.