• Title/Summary/Keyword: surface scaling

Search Result 254, Processing Time 0.027 seconds

Constraint Loss Assessment of SA508 PCVN Specimen according to Crack depth (SA508 PCVN 시편의 균열깊이에 따른 구속력 손실 평가)

  • Park, Sang-Yun;Lee, Ho-Jin;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.161-166
    • /
    • 2008
  • In general structures, cleavage fracture may develop under the low constraint condition of larger scale yielding with a shallow surface crack. However, standard procedures for fracture toughness testing require very severe restrictions of specimen geometry. So the standard fracture toughness data makes the integrity assessment irrationally conservative. In this paper, cleavage fracture toughness tests have been made on side-grooved PCVN (precracked charpy V-notch) type specimens (10 by 10 by 55 mm) with varying crack depth, The constraint effects on the crack depth ratios are quantitatively evaluated by scaling model and Weibull stress method using 3-D finite clement method, After correction of constraint loss due to shallow crack depths, the statistical size effect are also corrected according to the standard ASTM E 1921 procedure, The results snowed a good agreement in the geometry correction regardless of the crack size, while some over-corrections were observed in the corrected values of $T_0$.

  • PDF

경사진 고체 표면 위를 내려가는 액적의 미글림 유동

  • 김진호;김호영;강병하;이재헌
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.1025-1033
    • /
    • 2001
  • A scaling analysis is provided which predicts the sliding velocity of a liquid drop down an inclined surface. The analysis is based on the balance of the gravitational work rate that drives the drop sliding and the resistances by capillary and viscous forces. The capillary resistance is accounted for via the contact angle hysteresis, which is quantified by measuring the critical inclination causing the drop to start sliding. The sliding of the drop is governed by the rate of the viscous dissipation of the Stokes flow. The analysis result in its limit form for small contact angles is consistent with previous results. In the experiments to verify the analysis results, the measured sliding velocity of various liquid drops are shown to obey the predictions made in this study.

  • PDF

Dealing with gravity on galactic scales

  • Trippe, Sascha
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.1
    • /
    • pp.36.1-36.1
    • /
    • 2013
  • I present a simple scheme for the treatment of gravitational interactions on galactic scales. In analogy with known mechanisms of quantum field theory, I assume ad hoc that gravitation is mediated by virtual exchange particles - gravitons - with very small but non-zero masses. The scheme predicts the asymptotic flattening of galactic rotation curves, the Tully-Fisher/Faber-Jackson relations, the mass discrepancy-acceleration relation of galaxies, and the surface brightness-acceleration relation of galaxies correctly; additional (dark) mass components are not required. The well-established empirical scaling laws of Modified Newtonian Dynamics follow naturally from the model. The scheme I present is not a consistent theory of gravitation; rather, it is a toy model providing a convenient scaling law that simplifies the description of gravity on galactic scales.

  • PDF

Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea (동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성)

  • Baek, Seung-Ho;Kim, Dong-Sun;Hyun, Bong-Gil;Choi, Hyun-Woo;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.

Evolution of surface morphology and roughness in Si and $_{0.7}$Ge$_{0.3}$ thin fimls (Si 및Si$_{0.7}$Ge$_{0.3}$ 박막의 표현형태 및 조도의 전개)

  • 이내웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.31 no.6
    • /
    • pp.345-358
    • /
    • 1998
  • The evolution of surface roughness and morphology in epitaxial Si and $Si_{0.7}Ge{0.3}$ alloys grown by UHV opm-beam sputter deposition onto nominally-singular, [100]-, and [110]-mi-scut Si(001) was investigated by stomic force microscopy and trasmission electron microscopy. The evolution of surface roughness of epitaxial Si films grown at $300^{\circ}C$ is inconsistent with conventional scaling and hyperscaling laws for kineti roughening. Unstable growth leading to the formation of mounds separated by a well-defined length scale is observed on all substrates. Contraty to previous high-temperature growth results, the presence of steps during deposition at $300^{\circ}C$ increases the tendency toward unstable growth resulting in a much earlier development of mound structures and larger surface roughnesses on vicival substrates. Strain-induced surface roughening was found to dominate in $Si_{0.7}Ge{0.3}$ alloys grown on singular Si(001) substrates at $T_S\ge450^{\circ}C$ where the coherent islands are prererentially bounded along <100> directions and eshibt {105} facetting. Increasing the film thickness above critical values for strain relaxation leads to island coalescence and surface smoothening. At very low growth temperatures ($T_s\le 250^{\circ}C$), film surfaces roughen kinetically, due to limited adatom diffusiviry, but at far lower rates than in the higher-temperature strain-induced regime. There is an intermediate growth temperature range, however, over which alloy film surfaces remain extremely smooth even at thicknesses near critical values for strain relaxation.

  • PDF

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

3D image processing using laser slit beam and CCD camera (레이저 슬릿빔과 CCD 카메라를 이용한 3차원 영상인식)

  • 김동기;윤광의;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.40-43
    • /
    • 1997
  • This paper presents a 3D object recognition method for generation of 3D environmental map or obstacle recognition of mobile robots. An active light source projects a stripe pattern of light onto the object surface, while the camera observes the projected pattern from its offset point. The system consists of a laser unit and a camera on a pan/tilt device. The line segment in 2D camera image implies an object surface plane. The scaling, filtering, edge extraction, object extraction and line thinning are used for the enhancement of the light stripe image. We can get faithful depth informations of the object surface from the line segment interpretation. The performance of the proposed method has demonstrated in detail through the experiments for varies type objects. Experimental results show that the method has a good position accuracy, effectively eliminates optical noises in the image, greatly reduces memory requirement, and also greatly cut down the image processing time for the 3D object recognition compared to the conventional object recognition.

  • PDF

Human Arm Motion Tracking based on sEMG Signal Processing (표면 근전도 신호처리 기반 인간 팔 동작의 추종 알고리즘)

  • Choi, Young-Jin;Yu, Hyeon-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.8
    • /
    • pp.769-776
    • /
    • 2007
  • This paper proposes the human arm motion tracking algorithm based on the signal processing for surface EMG (electromyogram) sensors attached on both upper arm and shoulder. The signals acquired by using surface EMG sensors are processed with choosing the maximum in a short period, taking the absolute value, and filtering noises out with a low-pass filter. The processed signals are directly used for the motion generation of virtual arm in real time simulator. The virtual arm of simulator has two degrees of freedom and complies with the flexion and extension motions of elbow and shoulder. Also, we show the validity of the suggested algorithms through the experiments.

Influence of Scaling in Drone-based Remotely Sensed Information on Actual Evapotranspiration Estimation (드론 원격정보 격자크기가 실제증발산량 산정에 미치는 영향)

  • Lee, Khil-Ha
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.135-141
    • /
    • 2018
  • The specification of surface vegetation is essential for simulating actual evapotranspiration of water resources. The availability of land cover maps based on remotely collected data makes the specification of surface vegetation easier. The spatial resolution of hydrologic models rarely matches the spatial scales of the vegetation data needed, and remotely collected vegetation data often are upscaled up to conform to the hydrologic model scale. In this study, the effects of the grid scale of of surface vegetation on the results of actual evapotranspiration were examined. The results show that the coarser resolution causes larger error in relative terms and that a more realistic description of area-averaged vegetation nature and characteristics needs to be considered when calculating actual evapotranspiration.

Sub-grid study of scaling effects to evapotranspiration of heterogeneous forest landscape at the Volga source area in Russia

  • Oltchev, A.;G.Gravenhorst;A.P.Tishenko;Joo, Y.T.
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2001.06a
    • /
    • pp.151-152
    • /
    • 2001
  • A common problem of the model simulations of the land surface - atmosphere interaction is to choose the appropriate spatial scale and resolution at which the simulations are to be performed. The accuracy of energy and water exchange predictions between the land surface and the atmosphere in regional and global scale atmospheric models is mainly influenced by: model simplifications applied to describe the spatial heterogeneity of land surface properties within individual grid cells; ignoring the variability of sub-grid properties (e.g. relief, vegetation, soils), and; lacks of necessary input meteorological and biophysical data.(omitted)

  • PDF