• Title/Summary/Keyword: surface rolling

Search Result 545, Processing Time 0.023 seconds

Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process (HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.

Prediction of Free Surface by Streamline-Tracing Method (유선추적법을 이용한 자유표면 예측기법 개발)

  • 김태효;황상무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.175-178
    • /
    • 1998
  • Tracings streamlines in global coordinate, especially with finite element mesh, requires much computation due to C0 continuity of velocity field. In this study, a new approach is presented for the determination of streamlines from velocity field obtained by FE analysis. It is shown that amount of calculation can be drastically reduced and boundary of element can be easily treated. The approach is applied to the problem of free surface of deforming workpieces in shape rolling.

  • PDF

Mechanical Characteristics of Nano-Structured Tool Steel by Ultrasonic Cold Forging Technology

  • Suh, Chang-Min;Song, Gil-Ho;Suh, Min-Soo;Pyoun, Young-Shik;Kim, Min-Ho
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.35-40
    • /
    • 2006
  • Ultrasonic cold forging technology (UCFT) utilizing ultrasonic vibration energy is a method to induce severe plastic deformation to a material surface, therefore the structure of the material surface becomes a nano-crystal structure from the surface to a certain depth. It improves the mechanical properties; hardness, compressive residual stress, wear and fatigue characteristics. Applying UCFT to a rolling process in the steel industry is introduced in this study. First, the UCFT specimens of a tool steel (SKD-61/equivalent H13) are prepared and tested to verify the effects of the UCFT in a variety of mechanical properties, the UCFT is applied to the trimming knives in a cold rolling process. It has been determined that UCFT improves the mechanical properties effectively and becomes a practical method to improve productivity and reliability by about two times compared with the conventionally treated tooling in the trimming process in a cold rolling line.

  • PDF

Effect of Rail Surface Damage on Contact Fatigue Life (레일표면손상이 접촉피로수명에 미치는 영향)

  • Seo, Jung-Won;Lee, Dong-Hyong;Ham, Young-Sam;Kwon, Sung-Tae;Kwon, Seok-Jin;Cho, Ha-Yong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.613-620
    • /
    • 2012
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

A Study on the Wear Performances of Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate under Sliding and Rolling Contacts (미끄럼 및 구름접촉하에서 Dibutyl 3,5-di-t-Butyl 4-Hydroxy Benzyl Phosphonate의 마모성는에 관한 연구)

  • 최웅수;한흥구;권오관
    • Tribology and Lubricants
    • /
    • v.7 no.1
    • /
    • pp.40-45
    • /
    • 1991
  • Wear performances for dibutyl 3,5-di-t-butyl 4-hydroxy benzyl phosphonate (DBP) were invesitigated using the four ball test machine under sliding and also rolling contact conditions, and compared with ZDDP. DBP showed excellent antiwear performace compared with ZDDP under severe sliding contact. Also, DBP achieved a longer fatigue life than ZDDP under rolling contact conditions. The surface of the worn balls was observed using an optical microscope, and the wear derbis generated was measured using the Particle Quantifier (PQ).

Study on the Effect of Rail Roughness in Wheel-Rail Contact Noise (레일 조도가 차륜-레일 접촉 소음에 미치는 영향)

  • Lee, Chan-Woo;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.161-164
    • /
    • 2010
  • The surface roughness of wheels and rails are known to be major contributory factors in wheel-rail rolling noise. Generally, the rail roughness was greater than the wheel roughness. Generally, rolling noise sizes and noise level in compliance with wheel/rail roughness almost are reported with the fact that is similar. Rolling noise important factors rightly being in compliance with roughness of contact point regions of the wheel/the rail, presented from the present paper.

  • PDF

Development of Production Technology for Aluminum Rolling Stocks (알루미늄 철도차량의 생산 기술 개발)

  • 서승일
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.505-511
    • /
    • 1998
  • Production technologies for aluminum rolling stocks are mainly related to welding of aluminum alloys. Automatic welding of extrusion profiles and control of welding deformations are the important contents of the production technologies. Another production technology other than welding is the technique for surface treatment of aluminum carbody. In this paper, problems caused during construction of the test carbody are described and the remedies for the problems are suggested. The accumulated experiences and systematic data will be helpful for the mass production of aluminum rolling stocks in the furture.

  • PDF

Evolution of Microstructure in Al-4.0%Zn-1.5%Mg-0.9%Cu Alloy by Extrusion, Rolling and Heat Treatment (Al-4.0%Zn-1.5%Mg-0.9%Cu 합금의 압출, 압연 및 열처리에 따른 미세조직 변화)

  • Kwon, Hyeok Gon;Park, Jong Moon;Oh, Myung Hoon;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.2
    • /
    • pp.41-48
    • /
    • 2018
  • In this study, microstructural changes due to extrusion, rolling and heat treatment were studied to fabricate Al-4.0wt%Zn-1.5wt%Mg-0.9wt%Cu alloys with homogeneous microstructure suitable for metal cases of smart phones and electronic products fabricated through plastic working. After extrusion microstructure and texture were developed very differently on the surface and inside. Inside, coarse grains were formed and a strong Cube component orientation was developed. On the surface, a weak texture was developed with small grains. After 72% cold rolling the intensity of the Cube component orientation was lower, and uniform texture was developed in all the layers and the R-value was uniformly predicted. After recrystallization, the grain size difference between at the surface and the inside is smaller, when 72% rolling was performed, indicating that a uniform structure is formed. Texture develops almost randomly after recrystallization and exhibits uniform R-values at all layers.

Evaluation of Material Durability by Identifying the Relationship between Contact Angle after Wear and Self-cleaning Effect Using Rolling Wear Tester (구름 마모시험 장비(Rolling wear tester)를 이용한 마모 후의 접촉각과 자가세정 효과와의 관계 규명을 통한 재료 내구성 평가)

  • Kyeongryeol Park;Yong Seok Choi;Seongmin Kang;Unseong Kim;Kyungeun Jeong;Young Jin Park;Kyungjun Lee
    • Tribology and Lubricants
    • /
    • v.39 no.6
    • /
    • pp.256-261
    • /
    • 2023
  • This study is conducted to evaluate the durability of superhydrophobic surfaces, with a focus on two aspects: contact angle measurement and self-cleaning-performance analysis. Superhydrophobic copper and aluminum surfaces are fabricated using the immersion method and subjected to a rolling wear test, in which a 2 kg weight is placed on a rolling tester, under loaded conditions. To evaluate their durability, the contact angles of the specimens are measured for each cycle. In addition, the surface deformation of the specimens before and after the test is analyzed through SEM imaging and EDS mapping. The degradation of the self-cleaning performance is evaluated before and after the wear test. The results show that superhydrophobic aluminum is approximately 4.5 times more durable than superhydrophobic copper; the copper and aluminum specimens could endure 21,000 and 4,300 cycles of wear, respectively. The results of the self-cleaning test demonstrate that superhydrophobic aluminum is superior to superhydrophobic copper. After the wear test, the self-cleaning rates of the copper and aluminum specimens decrease to 72.7% and 83.4%, respectively. The relatively minor decrease in the self-cleaning rate of the aluminum specimen, despite the large number of wear cycles, confirms that the superhydrophobic aluminum specimen is more durable than its copper counterpart. This study is expected to aid in evaluating the durability of superhydrophobic surfaces in the future owing to the advantage of performing wear tests on superhydrophobic surfaces without damaging the surface coating.

The Effect of Lubrication on The Cold Rolling Texture in Low Carbon Steel Sheet (저탄소강판에서 압연집합조직에 미치는 윤활의 영향)

  • 김종수;조용상;허무영
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.85-88
    • /
    • 1997
  • The effect of lubrication on the evolution of the cold rolling texture in low carbon steels was studied by X-ray texture measurement. The cold rolling texture was inhomogeneous through the thickness of the rolling sheet. The type and sharpness of the texture through the thickness and the degree of inhomogeneity were found to be dependent on the friction acting between rolls and the rolled materials. The degree of the through thickness inhomogeneities was higher in the specimen rolled without lubrication. The friction acting on the roll surface led to the formation of the Goss-Orientation in the rolling texture.

  • PDF