• Title/Summary/Keyword: surface rolling

Search Result 545, Processing Time 0.029 seconds

An Experimental Study on the Rolling Resistance of Silver Coating Films Modified by Plasma Surface Treatments (플라즈마 표면개질 처리된 은 박막의 구름저항거동 고찰)

  • 양승호;공호성;윤의성;김대은
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.49-58
    • /
    • 1998
  • An experimental study was performed to discover the effect of adsorbed moisture on the rolling resistance behavior of pure silver coated 52100 bearing steel. Plasma surface modifications were performed on the silver coated specimen to change the wetting characteristics. Experiments using a thrust ball beating-typed roiling test-rig were performed under vacuum, dry air and various tmmidity conditions. Results showed that the changes in the wetting characteristics influenced remarkably on the silver particle agglomeration and resulted in the different behavior of rolling resistance with humidity.

  • PDF

Effect of Rolling Draughts on the Evolution of Through-Thickness Textures in Aluminum 5000X Sheet (알루미늄 5000계 판재에서 두께 층에 따른 집합조직 형성에 미치는 압연 패스당 변형률의 영향에 관한 연구)

  • 김현철;김용희;허무영
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.193-202
    • /
    • 2000
  • The influence of rolling draughts on the formation of through-thickness textures in aluminum 5000X sheet was investigated by X-ray texture measurements and microstructure observations. In order to intensify the deformation inhomogeneities, cold rolling was performed without lubrication. Applying a large draught gave rise to the formation of the shear texture at the surface, whereas a normal plane strain testure formed at the surface after deformation with a small draught. The orientation density along the $\beta$-fiber orientations which developed in the center layer of the rolled specimen was also dependent on the strain gradients in a roll gap. Upon annealing, the deformed substructure of sample surfaces was transformed into a fine grained recrystallized microsturcture through extended recovery reaction. However, coarse grains developed after the discontinuous recrystallization which gave rise to the development of the Cube-texture.

  • PDF

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

Investigation of single bubble behavior under rolling motions using multiphase MPS method on GPU

  • Basit, Muhammad Abdul;Tian, Wenxi;Chen, Ronghua;Basit, Romana;Qiu, Suizheng;Su, Guanghui
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1810-1820
    • /
    • 2021
  • Study of single bubble behavior under rolling motions can prove useful for fundamental understanding of flow field inside the modern small modular nuclear reactors. The objective of the present study is to simulate the influence of rolling conditions on single rising bubble in a liquid using multiphase Moving Particle Semi-implicit (MPS) method. Rolling force term was added to 2D Navier-Stokes equations and a computer program was written using C language employing OpenACC to port the code to GPU. Computational results obtained were found to be in good agreement with the results available in literature. The impact of rolling parameters on trajectory and velocity of the rising bubble has been studied. It has been found that bubble rise velocity increases with rolling amplitude due to modification of flow field around the bubble. It has also been concluded that the oscillations of free surface, caused by rolling, influence the bubble trajectory. Furthermore, it has been discovered that smaller vessel width reduces the impact of rolling motions on the rising bubble. The effect of liquid viscosity on bubble rising under rolling was also investigated and it was found that effects of rolling became more pronounced with the increase of liquid viscosity.

Evaluation of Rolling Contact Fatigue Damage of DCI by X-ray Diffraction (X선회절에 의한 구상흑연주철의 구름접촉 피로손상도 평가)

  • Lee, Han-Young
    • Journal of Korea Foundry Society
    • /
    • v.17 no.6
    • /
    • pp.577-584
    • /
    • 1997
  • Evaluation of rolling contact fatigue damage as well as material development for roll of rolling mill is being studied until quite recently. In this paper, a focus has been imposed on evaluating the rolling contact fatigue damage. In order for this, the accumulating process of rolling contact damage using the ferritic, pearlitic and bainitic DCI has been analyzed by X-ray diffraction technique. The main finds are; 1) The graphite in DCI is considered to be a cause of interfering in the redistribution of stress. Eventually, it results in the branching of crack. 2) The evaluation of rolling contact fatigue damage can be estimated in terms of the change of residual stress and/or a half-value breadth on surface during rolling contact.

  • PDF

Effect of Initial Texture on the Evolution of Warm Rolling Texture and Microstructure in Aluminum Alloy Sheet (알루미늄 판재의 온간압연 집합조직과 미세조직에 미치는 초기 집합조직의 영향)

  • Kim H. D.;Huh M. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.138-141
    • /
    • 2001
  • The evolution of lectures and microstructure during the warm-rolling and subsequent annealing in aluminum 3004 alloy sheets was investigated by employing X-ray texture measurements and microstructure observations. Whereas the typical $\beta$-fiber orientations with the strong Bs-orientation $\{112\}<110>$ formed in the normally cold-rolled specimen, the warm-rolling at $250^{\circ}C$ led to the development of a strong through thickness texture gradient which was characterized by shear texture at the surface layer and rolling textures at the center layer After warm rolling, ultra-fine grains formed in the thickness layer with shear texture components. Upon recrystallization annealing, the $\{001\}<100>$ Cube-texture developed at the expense of normal rolling texture components the rise to the formation of corase recrystallized grains. However, in the layer with shear texture components the continuous recrystallization took place and the fine grain size persisted even after recrystallization annealing.

  • PDF

Effect of Composition and Microstructure of Si$_3$N$_4$ Ball OH Rolling fatigue Life under Boundary Lubrication (경제윤활하에서 질화규소몰의 미세구조 및 조성이 구름피로수명에 미치는 영향)

  • 최인혁;송복한;신동우
    • Tribology and Lubricants
    • /
    • v.16 no.6
    • /
    • pp.477-483
    • /
    • 2000
  • Rolling contact fatigue (RCF) tests were performed for two kinds of commercial silicon nitride balls using 4-Ball rolling contact fatigue life tester under EHL condition (Λ=8.9) and boundary lubrication condition (Λ=0.2). All the test balls were finished up to the dimensional accuracy of Grade 5 defined in KS B 2001 (Steel Balls for Ball Bearings) with a size of 8.731 mm. RCF tests were then conducted under the initial theoretical maximum contact stress 6.63 GPa and the spindle speed 10,000 rpm. All the test balls were not failed until 3.75 $\times$ 107 contact cycles and wear tracks of test balls were not conspicuous under EHL condition (Λ= 8.9). In the operations of low lambda regime (Λ= 0.2), all the test balls were surface damaged and high rolling wear resistance was achievable in fully densified using MgO 1 wt% and HIPed balls. Rolling wear of silicon nitride balls under boundary lubrication condition depend mainly on grain size and intergranular phase content of silicon nitride balls.

Improvement of Thickness Accuracy in Hot-rolling Mill Using Neural Network and Genetic Algorithm (신경회로망과 유전자 알고리즘을 이용한 열연두께 정도 향상)

  • Son, Joon-Sik;Kim, Ill-Soo;Lee, Duk-Man;Kueon, Yeong-Seob
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.59-64
    • /
    • 2006
  • The automation of hot rolling process requires the developments of several mathematical models for simulation and quantitative description of the industrial operations involved in order to achieve the continuously increasing productivity, flexibility and quality(dimensional accuracy, mechanical properties and surface properties). The mathematical modeling of hot rolling process has long been recognized to be a desirable approach to investigate rolling operating practice and design of mill requirement. To achieve this objectives, a new teaming method with neural network to improve the accuracy of rolling force prediction in hot rolling mill is developed. Also, Genetic Algorithm(GA) is applied to select the optimal structure of the neural network and compared with that of engineers experience. It is shown from this research that both structure selection methods can lead to similar results.

Rolling Contact Fatigue Analysis According to Defect Size on Rail (레일의 표면결함크기에 따른 구름접촉수명평가)

  • Seo, Jung-Won;Kwon, Seong-Tae;Lee, Dong-Heong;Kwon, Seok-Jin
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.637-642
    • /
    • 2011
  • Rails are subjected to damage from rolling contact fatigue, which leads to defects such as cracks. Rolling contact fatigue damages on the surface of rail such as head check, squats are one of growing problems. Another form of rail surface damage, known as "Ballast imprint" has become apparent. This form of damage is associated with ballast particles becoming trapped between the wheel and the surface of rail. These defects are still one of the key reasons for rail maintenance and replacement. In this study, we have investigated whether the ballast imprint is an initiator of head check type cracks and effect of defect size using Finite element analysis. The FE analysis were used to investigate stresses and strains in subsurface of defects according to variation of defect size. Based on loading cycles obtained from FE analysis, fatigue analysis for each point was carried out.

  • PDF

Analysis for Optimal Rail Grinding Amount by Rolling Contact Fatigue Test in High Speed Railway (구름접촉피로시험을 통한 고속철도 레일연마량 분석)

  • Chang, Ki-Sung;Sung, Deok-Yong;Park, Yong-Gul;Choi, Jin-Yu;Lee, Dong-Hyung
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2115-2124
    • /
    • 2011
  • The rail surface defects which are generated on repeated rolling contact fatigue are getting increased according to high speed, high density, and minimum weight. In addition, Increasing noise and vibration are affected by these also impact load generated as well. Because of this phenomenon, more serious and critical damages were occurred. In fact, in order to control them, the rail grinding were conducted. However, there are not enough researches to make an criteria of generating optimal rail grinding amount in Korea. This study evaluated how depth of hardening on rail surface is formed and suggested optimal rail grinding amount by RCF(rolling contact fatigue) test with generated contact pressure between KTX wheel and UIC60 rail by applying FEM analysis. Therefore, the amount was generated approximately 0.2mm/20MGT to maintain integrity of rail surface by getting rid of depth of hardening on rail according to rail accumulated passing tonnage.

  • PDF