• Title/Summary/Keyword: surface rheological properties

Search Result 128, Processing Time 0.024 seconds

Interfacial and Rheological Properties of Selected Hydrogel Formulations for Soft Contact Lens (소프트 콘텍트 렌즈용 하이드로젤의 계면학적 및 유변학적 특성 연구)

  • Noh, Hye-Ran
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.190-195
    • /
    • 2012
  • Interfacial and rheological properties of selected hydrogel formulations were studied to understand the contact-lens comfort in end use. It was concluded that protein adsorption from aqueous solution decreased monotonically with increasing surface energy (water wettability) of tested hydrogels. Also, it has revealed that friction coefficient of polydimethylsiloxane-polyvinylpyrrolidone (PDMS-PVP) was significantly larger that 2-hydroxyethyl methacrylate (HEMA) based hydrogels. Interestingly, in artificial tear solution, friction coefficients of HEMA based hydrogels were larger than silicone hydrogels.

Friction and Wear Characteristics of Magneto-rheological Fluid Depend on Surface Coated by DLC and PTFE (DLC와 PTFE표면코팅에 따른 자기유변유체의 마찰 마모 특성)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee;Choi, JongMyong
    • Tribology and Lubricants
    • /
    • v.31 no.2
    • /
    • pp.62-68
    • /
    • 2015
  • A magnetorheological (MR) fluid is a smart material whose rheological behavior can be controlled by varying the parameters of the applied magnetic field. Because the damping force and shear force of an MR fluid can be controlled using a magnetic field, it is widely employed in many industrial applications, such as in vehicle vibration control, powertrains, high-precision grinding processes, valves, and seals. However, the characteristics of friction caused by iron particles inside the MR fluid need to be understood and improved so that it can be used in practical applications. Surface process technologies such as polytetrafluoroethylene (PTFE) coatings and diamond-like carbon (DLC) coatings are widely used to improve the surface friction properties. This study examines the friction characteristics of an MR fluid with different surface process technologies such as PTFE coatings and DLC coatings, by using a reciprocating friction tester. The coefficients of friction are in the following descending order: MR fluid without any coating, MR fluid with a DLC coating, and MR fluid with a PTFE coating. Scanning electron microscopy is used to observe the worn surfaces before and after the experiment. In addition, energy dispersive X-ray spectroscopy is used to analyze the chemical composition of the worn surface. Through a comparison of the results, the friction characteristics of the MR fluid based on the different coating technologies are analyzed.

Studies on Rheological Properties of High Solids Coating Colors (I) - Effect of Rheology Modifiers on Viscoelastic Properties -

  • Yoo, Sung-Jong;Cho, Byoung-Uk;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.5
    • /
    • pp.39-45
    • /
    • 2012
  • For a fundamental study for high concentration pigment coating, the effects of alkali swellable emulsion (ASE) type rheology modifier and surface adsorption emulsion (SAE) type rheology modifier on both the stability and the viscoelastic behavior of a coating color were elucidated. The coating color prepared with SAE type rheology modifier showed superior thermal and mechanical stability than that with ASE type. In the high concentration and high speed coating process, the mechanical stability of a coating color was a key parameter since both impact force and shear force were increased with the increase of coating color concentration and coating speed, respectively.

A Study on the Color Reproduction of Halftone Image by used Factor N and Process Ink Characteristics (Factor N와 잉크특성을 고려한 망점화상의 색재현예측에 관한 연구)

  • 김성근
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.12 no.1
    • /
    • pp.13-27
    • /
    • 1994
  • Litho printing ink vehicles based on rosin modified phenolic are faster drying, have better durability, are harder and glosser and have greater resistance to water than ones based on ester gums. Ink-Water balance and rheological properties are important in litho printing process. These physical properties is concerned with molecular weight of Resin to use vehicle. So this paper was studied about the effects of changing molecular weight of Rosin modified phenolic on surface tension, viscosity, pseudoplasticity and printablility of Litho Inks. The results were as follows. 1) The surface tension of model inks depended on the molecular weight of the resin : Dispersion componnent of ink increase but non dispersion component decrease as molecular weight of Resin increase. 2) Water pick-up of litho ink is more fast balance, using low molecular weight of Resin. 3) Viscosity, Yield value and Newtonian value of model inks increase as molecular weight of Resin increase. 4) The litho ink prepared with the modified phenolic of which molecular weight is about 20000 showed the highest printing density and gloss.

  • PDF

Biocompatibility and Biodegradation of Poly(butylene succinate) ionomer (Poly(butylene succinate) ionomer (PBSi)의 생체적합성과 생분해에 관한 연구)

  • Han, Sang-Il;Kang, Sun-Woong;Kim, Byung-Soo;Seungsoon Im
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10b
    • /
    • pp.187-188
    • /
    • 2003
  • In previous study, we examined poly(butylene succinate) ionomer (PBSi) and confirmed that PBSi showed acceptable mechanical and rheological properties to apply in various field, due to the physical cross-linkage formed by ion aggregation. Besides, the incorporation of ionic groups led to the change of surface properties such as the hydrophilicity and surface morphology, which could affect hydrolytic degradation. (omitted)

  • PDF

Quality and Long-tern Aged Healing Properties of Self-healing Surface Protection Materials Using Solid Capsules (고상캡슐을 활용한 자기치유 표면보호재의 품질 및 장기재령 치유특성)

  • Oh, Sung-Rok;Nam, Eun-Joon;Kang, Shin-Taeg;Choi, Yun-Wang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.397-404
    • /
    • 2021
  • In this study, it was reviewed that the effect of solid capsules on the quality of surface repair materials and the healing properties of long-term aging, as part of a study to utilize self-healing surface repair materials using solid capsules as repair materials. As a result of evaluation of the rheological properties of self-healing surface repair materials according to the mixing of solid capsules, plastic viscosity, yield stress, and table flow tended to decrease. In the case of compressive strength, 1MPa per 1% of the solid capsule decreased proportionally. As a result of evaluating the long-term healing properties, when 10% of solid capsules were mixed, a healing rate of 90% was shown at 28 days of healing, because the solid capsule was preserved even after 91 days of age had elapsed. after 91 days of healing, even in the case of 5% of solid capsules, a healing rate of 90% was shown.

Comparison of Thermal Properties and Surface Structures of Unmodified, Spray-Dried, and Extrusion-Dried Agar (일반한천, 분무건조한천, 압출성형한천의 열 특성 및 표면구조의 비교)

  • 김희구;손홍주
    • The Korean Journal of Food And Nutrition
    • /
    • v.10 no.2
    • /
    • pp.234-240
    • /
    • 1997
  • Agar has widely been used as medical aids and food ingredients due to its pecular physicochemical and rheological properties. In this paper, the effects of spray drying and extrusion drying on functional properties of agar were investigated to clarify the sol-gel transition mechanism at low temperature and microstructure of agar gel by measuring phase transition by differential scanning calorimetery, structural differences by light microscope and scanning electron microscope observation. The lowest endothermic onset(To), peak(Tp), conclusion(Tc) temperature and enthalpy($\Delta$H) using differential scanning calorimetery were showed in extrusion-dried agar wic were checked in 41.30, 61.72, 80.50 and 0.73cal/g. In cases of unmodified and spray-dried, the values were 81.20, 95.51, 112.14 and 3.22cal/g, and 60.11, 76.45, 89.54 and 1.53cal/g, respectively. When all samples were reheated using differential scanning calorimetery after gelling fully, no significant differences of endothermic To, Tp, Tc and $\Delta$H appeared. The surface structure of unmodified agar powder observed by light microscope and scanning electron microscope appeared a continuous surface without any indication of small pores, gaps or point of discontinuity. In cases of spray-dried agar, the unstable structures with pores was resulted. The microstructures of extrusion-dried agar, however, was solid with large gaps and areas of discontinuity in the surface. From the results above, it was suggested that significant differences in phase transition and surface microstructures were clearly related to the physicochemical changes and rheological properties, solubility and gelling ability of the types of agar gel.

  • PDF

New Hyperbranched Polyimides and Polyamides: Synthesis, Chain-End Functionalizations, Curing Studies, and Some Physical Properties (새로운 Hyperbranchedpolyimidesandpolyamides: 합성, 말단기 변형, 경화 연구, 그리고 물리적 성질)

  • Baek, Jong-Beom;Chris B. Lyon;Tan, Loon-Seng
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.1-2
    • /
    • 2003
  • While aromatic polyimides and polyamides have found widespread use as high performance polymers, the present work addressed the need for organosoluble materials through the use of a hyperbranching scheme. The $AB_2$ monomers were prepared. The $AB_2$ monomers were then polymerized via aromatic fluoride-displacement and Yamazaki reactions to afford the corresponding hydroxyl-terminated hyperbranched polyimides (HT-PAEKI) and amine-terminated hyperbranched polyamides, respectively. HT-FAEKI was then functionalized with allyl and propargyl bromides as well as epichlorohydrin to afford allyl-terminated AT-PAEKI, propargyl-terminated PT-PAEKI, and epoxy (glycidyl)-terminated ET-PAEKI, in that order. All hyperbranched poly(ether-ketone-imide)s were soluble in common organic solvents. AT-PAEKI was blended with a bisphenol-A-based bismaleimide (BFA-BMI) in various weight ratios. Thermal, rheological, and mechanical properties of these blend systems were evaluated. Two characteristic hyperbranched polyamides, which the one has para-electron donating groups to the surface amine groups and the other has para-electron withdrawing groups to the surface amine groups, were selected to compare BMI curing behaviors. The electron rich polymer displayed ordinary Michael addition type exothermic reaction, while electron deficient polymer did display unusual curing behaviors. Based on analytical data, the later system provided the strong evidences to support room temperature curing of BMI by reactive intermediates instead of reactive primary amine groups on the macromolecule surface.

  • PDF

Structural and Rheological Properties of Sweet Potato Starch Modified with 4-$\alpha$-Glucanotransferase from Thermus aquaticus

  • Lee, Seung-Hee;Choi, Seung-Jun;Shin, Sang-Ick;Park, Kwan-Hwa;Moon, Tae-Wha
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.705-712
    • /
    • 2008
  • Sweet potato starch was modified using Thermus aquaticus $\alpha$-1,4-glucanotransferase ($Ta{\alpha}GT$), and its structural and rheological properties were investigated. $Ta{\alpha}GT$-modified starch had a lower amylose level and molecular weight than raw starch. The chain length distribution showed an increased number of short and long branched chains and the formation of cycloamyloses. Compared with raw starch, $Ta{\alpha}GT$-modified starch displayed a lower gelatinization enthalpy and a wider melting temperature range. The X-ray diffraction of $Ta{\alpha}GT$-modified starch was a weak V-type pattern with distinct sharp peaks at 13 and $20^{\circ}$. Scanning electron micrographs of modified starch exhibited big holes on the surface and the loss of granular structure. The frequency sweep measurement revealed that the gel of $Ta{\alpha}GT$-modified starch was more rigid than raw starch gel. However, the structure of modified starch gel was destroyed by heating at $75^{\circ}C$, and a firm gel was re-formed by subsequent storage at $5^{\circ}C$, indicating thermoreversible property.

Analysis of Mold Filling Associated with Unsteady Flow in Injection Molding Process (사출성형 공정에서 비정상 흐름에 의한 Mold Filling 현상)

  • 류민영;신희철;배유리
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.545-555
    • /
    • 2000
  • Surface defects in injection molded parts due to the unsteady flow are related to the dimension of gate, operational conditions and rheological properties of polymer. In this study we have examined surface defects in injection molding for PC, PBT and PC/ABS alloy with several injection speeds. We have used various cavity shapes that are tensile, flexural and impact test specimens with various gate and cavity thicknesses. Through this study we have observed that the formation of surface defect associated with jetting during filling stage in injection molding is strongly related to not on]v die swell but retardation of die swell. Large die swell eliminates jetting however the large retardation of die swell stimulates jetting. Reducing the thickness ratio of cavity to gate can reduce or eliminate jetting and surface defects. It also enlarges process window that can produce steady flow of polymer melt in injection molding.

  • PDF