• Title/Summary/Keyword: surface reinforcement

Search Result 686, Processing Time 0.021 seconds

Failure Mechanism of Geosynthetic Reinforced Segmental Retaining Well in Tiered Configuration Using Reduced-scale Model Tests (축소 모형 실험에 의한 계단식 보강토옹벽의 파괴 메카니즘)

  • Yoo Chung-Sik;Jung Hyuk-Sang;Jeon Sang-Soo;Lee Bong-Won;Kim Ki-Yeon;Jeon Han-Yong
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.65-77
    • /
    • 2005
  • This paper investigates the failure mechanism of geosynthetic-reinforced segmental retaining walls with tiered configuration using reduced-scale model tests. The reduced scale model test set-up was established to simulate a 5 m high full-scale wall. The geometry and material properties used in the model test were determined based on the Similitude Laws. The wall failures in the model tests were successfully generated by their self weight without any surface loading and analyzed examining the digital video recordings. The failure mechanisms was examined with respect to the various offsets between the lower and upper teres and the reinforcement length. Based on the results the appropriateness of the current design guideline was discussed.

A Case Study of Reinforcing Ground behind Abutment using Twin-Jet Method (트윈제트공법을 이용한 교대 배면 기초보강 사례)

  • Kim, Yong-Hyun;Jang, Yeon-Soo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.638-645
    • /
    • 2010
  • This study introduces a reinforcement work case using Twin-Jet Method. The area is located behind the abutment of the bridges built on soft clay along the $\bigcirc\bigcirc$ Express Highway. Its foundation was constructed by installing EPS blocks on the original ground to reduce the embankment load under the highway. However, the ground deformation has continuously occurred due to the settlement of the foundation soft cohesive soils. The amounts of subsidences at the surface turned out to be 20~30.0mm, After the pavement patch work on April 23, 2009, a drastic subsidence occurred together with 10mm swell, For this reason, Twin-Jet grout column construction was applied by passing through the EPS banking blocks without closing traffic flows on the express highway. The outcomes of core sample tests after reinforcing the ground turned out to be TCR 92.5%, RQD 64.6% and unconfined compressive strength 2.3~8.6Mpa. The test results showed that the condition of the ground foundation had improved using Twin-Jet grouting in most layers of ground including the cobble and gravel layer.

  • PDF

Cyclic behavior of steel I-beams modified by a welded haunch and reinforced with GFRP

  • Egilmez, O. Ozgur;Alkan, Deniz;Ozdemir, Timur
    • Steel and Composite Structures
    • /
    • v.9 no.5
    • /
    • pp.419-444
    • /
    • 2009
  • Flange and web local buckling in beam plastic hinge regions of steel moment frames can prevent beam-column connections from achieving adequate plastic rotations under earthquake-induced forces. Reducing the flange-web slenderness ratios (FSR/WSR) of beams is the most effective way in mitigating local member buckling as stipulated in the latest seismic design specifications. However, existing steel moment frame buildings with beams that lack the adequate slenderness ratios set forth for new buildings are vulnerable to local member buckling and thereby system-wise instability prior to reaching the required plastic rotation capacities specified for new buildings. This paper presents results from a research study investigating the cyclic behavior of steel I-beams modified by a welded haunch at the bottom flange and reinforced with glass fiber reinforced polymers at the plastic hinge region. Cantilever I-sections with a triangular haunch at the bottom flange and flange slenderness ratios higher then those stipulated in current design specifications were analyzed under reversed cyclic loading. Beam sections with different depth/width and flange/web slenderness ratios (FSR/WSR) were considered. The effect of GFRP thickness, width, and length on stabilizing plastic local buckling was investigated. The FEA results revealed that the contribution of GFRP strips to mitigation of local buckling increases with increasing depth/width ratio and decreasing FSR and WSR. Provided that the interfacial shear strength of the steel/GFRP bond surface is at least 15 MPa, GFRP reinforcement can enable deep beams with FSR of 8-9 and WSR below 55 to maintain plastic rotations in the order of 0.02 radians without experiencing any local buckling.

Influence of steel fiber contents on corrosion resistance of steel reinforcement (강섬유 혼입량이 철근 부식저항성능에 미치는 영향)

  • Kim, Seong-Do;Moon, Do-Young;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.283-293
    • /
    • 2015
  • In order to evaluate corrosion resistance of steel fiber-reinforced concrete, accelerated chloride migration and surface resistivity tests were conducted. In addition air content of fresh concrete, compressive strength and water absorption were measured for investigating fundamental characteristics of concrete. Two different water-cement ratios(0.44, 0.5) and three steel fiber contents(0.25%, 0.5%, 1%) were considered as variables. Note that all specimens cast with same compaction work. As a results, corrosion resistance decreased as steel fiber contents increased regardless of water-cement ratio when the concrete was compacted with same amount of work done. However, for concrete with same steel fiber content, the lower water-cement ratio showed the better corrosion resistance. It is found that enhancement of fluidity and enough compaction should be done for corrosion resistance of SFRC.

Optimum Slab-Lifting Positions for Precast Concrete Pavement Construction (프리캐스트 콘크리트 포장 시공 시 최적 슬래브 리프팅 위치)

  • Kim, Seong-Min;Cho, Byoung-Hooi;Han, Seung-Hwan
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.27-37
    • /
    • 2007
  • This research was conducted to determine the optimum lifting positions on precast concrete slabs for precast concrete pavement construction, based on the analysis of concrete stress distribution under various lifting conditions. To analyze stresses in concrete slabs, the finite element method was implemented and a numerical model of the precast slab that was going to be used in the experimental construction was developed. Changes in the stress distribution due to the lifting angle were investigated because slab lifting is not always performed in the perpendicular direction to the slab surface. In addition, the effect of the lifting level, the distance between the neutral axis of the slab and the lifting point, on the stress distribution was investigated since the lifting point is not always at the neutral axis of the slab. To consider the actual steel design of the precast slab, the effect of the reinforcement near the lifting point was also investigated. From this study, the optimum lifting positions of the precast slabs were determined according to the lifting angle and level, and the results were compared with the lifting positions used in the PCI standards.

  • PDF

EFFECT OF FLASHING AND UPSETTING PARAMETERS ON THE FLASH BUTT WELDING OF HIGH STRENGTH STEEL

  • Kim, Young-Sub;Kang, Moon-Jin
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.384-389
    • /
    • 2002
  • This study was aimed to evaluate the weldability and optimize the welding conditions for flash butt welding of 780MPa grade steel applied to the automotive bumper reinforcement. And then the relationship between the welding conditions and the joint performance relating specifically to coil-joining steel would be established. The effect of welding conditions between flashing and upsetting process was elucidated. Microstructure observation of the joint indicated that the decarburized band was mainly changed with upsetting process. Width of HAZ was also related to the upsetting conditions rather than the flashing conditions. Generally maximum hardness at HAZ was correlated with $C_{eq}$ of steel and the empirical relationship was obtained to estimate the HAZ properties. Tensile elongation at the joint was usually decreased with increasing the initial clamping distance. Investigation of fracture surface after tensile and bending tests reveal that the origin of cracking at the joint was oxide inclusions composed of $SiO_2$, MnO, $Al_2$ $O_3$, and/or FeO. The amount of inclusions was dependent on the composition ratio of Mn/Si in steel. If this ratio was above 4, the amount of inclusions was low and then the resistance to cracking at the joint was enough to maintain the joint performance. It was obtained that the flashing process influenced the conditions for the energy input to establish uniform or non-uniform molten layer, while the upsetting conditions influenced the joint strength. Heat input variable during flashing process was also discussed with the joint properties.

  • PDF

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF

Comparative Analysis on Repairing Cost of Lawsuit on Concrete Crack Defect in Apartment Building (공동주택 하자소송의 균열하자보수비 비교.분석 연구)

  • Kim, Beop-Su;Park, Jun-Mo;Choi, Jeong-Hyun;Seo, Deok-Seok;Kim, Ok-Kyue
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.142-150
    • /
    • 2011
  • Defect dispute has been increasing to claim by condominium, in increasing to demand and concern in value, quality, and management of apartment building since 2000s. In this study, for checking property of cost in crack issue with precedure of lawsuit on defect, it is analyzing details about repairing cost of concrete crack defect that formed 77 percent of repairing cost. Futhermore, it is studying of composition of repairing cost and difference of repairing cost by repairing method. This is checking details that cost growth has a difference whether court accept a acceptable range of crack width, and repairing method and reinforcement work has to choose between a surface treatment method, a filling method and a injecting method. Meanwhile, it is considerable that disparity of repairing cost whether is a method of painting work.

EFFECTS OF CHOPPED GLASS FIBER ON THE STRENGTH OF HEAT-CURED PMMA RESIN

  • Lee Sang-Il;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.6
    • /
    • pp.589-598
    • /
    • 2001
  • The fracture of acrylic resin dentures remains an unsolved problem. Therefore, many investigations have been performed and various approaches to strengthening acrylic resin, for example, the reinforcement of heat-cured PMMA resin using glass fibers, have been suggested over the years. The aim of the present study was to investigate the effect of short glass fibers treated with silane coupling agent on the transverse strength of heat-polymerized PMMA denture base resin. To avoid fiber bunching and achieve even fiber distribution, glass fiber bundles were mixed with PMMA powder in conventional mixer whose blade was modified to be blunt. Composite of glass fiber($11{\mu}m$ diameter, 3mm & 6mm length, silane treated) and PMMA resin was made. Transverse strength and Young's modulus were estimated. Glass fibers were incorporated with 1%, 3%, 6% and 9% by weight. Plasticity and workability of dough was evaluated. Fracture surface of specimens was investigated by SEM. The results of this study were as follows 1. 6% and 9% incorporation of 3mm glass fibers in the PMMA resin enhanced the transverse strength of the test specimens(p<0.05). 2. 6% incorporation of 6mm glass fibers in the PMMA resin increased transverse strength, but 9% incorporation of it decreased transverse strength(p<0.05). 3. When more than 3% of 3mm glass fibers and more than 6% of 6mm glass fibers were incorporated, Young's modulus increased significantly(p<0.05). 4. Workability decreased gradually as the percentage of the fibers increased. 5. Workability decreased gradually as the length of the fibers increased. 6. In SEM and LM, there was no bunching of fibers and no shortening of fibers.

  • PDF

A study on the Chronological Recordings and construction method of Wooden Pagoda Sites of Baekjae (백제(百濟) 목탑지(木塔地) 편년(編年)과 축기부(軸基部) 축조기법(築造技法)에 관한 연구(硏究))

  • Cho, Weon-Chang
    • Journal of architectural history
    • /
    • v.17 no.4
    • /
    • pp.65-82
    • /
    • 2008
  • The wooden pagoda sites which have been confirmed in Baekjae's former territory so far have flattened surface of the earth or foundation pert made by digging up the earth. In particular, the latter is found more often in the pagoda sites of Baekjae, which is essential and absolutely necessary because of the characteristics of pagoda structure. The wooden pagoda sites with foundation part made by digging up the earth under the stylobate are found at Yongjeongli ruined temple site of Woongjin area, and at Neung-sa temple site, Wangheung-sa temple site, Geumgang-sa temple site, and Mireuk-sa temple site of Sabi period. They are also observed at Hwanglyong-sa nine-storied wooden pagoda of Shilla and at Biin five-storied stone pagoda of early Goryeo. They are important data improving that the construction technologies of Baekjae continued to be applied to build stone or wooden pagodas, transcending time and space. Recently, the site assumed as a wood pagoda site of Hanseong area was examined in Gyeongdang sect ion of Pungnap mud fortification. If this is proved to be a real wooden pagoda site, this digging-up construction technology of foundation part ann be concluded to be a traditional engineering technology of Baekjae which was frequently used from Hanseong period to Sabi period. On the other hand, this digging-up construction technology of foundation part has been found only at pagoda sites and main building sites of temple ruins, and it helps examine their symbolism.

  • PDF