• Title/Summary/Keyword: surface reinforcement

Search Result 686, Processing Time 0.024 seconds

A study on Monitoring the Inner Structure of Dam Body Using High Resolution Seismic Reflection Method (고분해능 탄성파 반사법을 이용한 댐체 내부구조 모니터링 연구)

  • Kim, Jung-Yul;Kim, Hyoung-Soo;Oh, Seok-Hoon;Kim, Yoo-Sung
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Defects of dam body which can be induced in seepage or leakage procedure can directly affect dam safety. Therefore, a proper inspection method should be carried out in the first place to find out their positions and sizes. After that, some reinforcement works such as grouting and the corresponding assessment could be taken in a proper way. The dam(center core type earth dam) issued in this study has been in need for intensive diagnosis and reinforcement work, because a lot of slumps similar to cracks, seepage and some boggy area have been observed on the downstream slope. High resolution seismic reflection method was performed on the crest profile twice before and after grouting work(Aug. 2001 and Nov. 2004) aimed at the dam inspection and the assessment of grouting efficiency as well. To enhance the data resolution, P-beam energy radiation technique which can reduce the surface waves and hence to reinforce the reflection events was used. Strong reflection events were recognized in the stack section before grouting work, It seems that the events would be caused by e.g. horizontal cracks with a considerable aperture. Meanwhile such strong reflection events were not observed in the section after grouting. That is, the grouting work was dear able to reinforce the defects of dam body. Hence, the section showed an well arranged picture of dam inner structure. In this sense, seismic reflection method will be a desirable technique for dam inspection and for monitoring dam inner structure as well.

  • PDF

Concrete-Panel Retaining Wall anti-crack sleeve inserted (균열방지 슬리브가 매설된 패널식 옹벽)

  • Jang, Sung-Ho;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.345-349
    • /
    • 2019
  • In Korea, the mountainous area occupies more than 70% of the whole country, cutting of earth slope that cuts a part of the ground surface is widely used when building infrastructures such as road, railroad, and industrial complex construction. In recent years, regulations on environmental damage have become more strict, and various methods have been developed and applied. Among them, Concrete-Panel Retaining Wall technique is actively applied. Concrete-Panel Retaining Wall is a method to resist horizontal earth pressure by forming a wall by attaching a precast retaining wall to the front of the support material and increasing the shear strength of the disk through reinforcement of the support material. Soil nailing, earth bolt, and ground anchor are used as support material. Among them, ground anchor is a more aggressive reinforcement type that introduces tensile load in advance to the steel wire, and a large concentrated load acts on the front panel. This concentrated load is a factor that creates cracks in the concrete panel and reduces the durability of the retaining wall itself. In this study, steel pipe sleeves and reinforcements were purchased at the anchorage of the panel to prevent cracks, and by applying bumpy shear keys to the end of the panel, the weakness of the individual behavior of the existing grout anchors was improved. The problem of degraded landscape by exposure to front concrete of retaining wall and protrusion of anchorage was solved by the production of natural stone patterns and the construction of sections that do not protrude the anchorage. In order to verify the effectiveness of anti-crack sleeves and reinforcements used in the null, indoor testing and three-dimensional numerical analysis have been performed, and the use of steel pipe sleeves and reinforcements has demonstrated the overall strength increase and crack suppression effect of panels.

Pull-off Strength of Jagged Pin-reinforced Composite Hat Joints (요철핀으로 보강된 복합재 모자형 체결부 구조의 강도 연구)

  • Kwak, Byeong-Su;Kim, Dong-Gwan;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.323-331
    • /
    • 2018
  • The effect of stainless steel jagged-pin reinforcement on the pull-off strength of the composite hat-joint was studied by the test. The pins were physically and chemically surface-treated and inserted in the thickness direction over the interface where the skin and stiffener meet. The specimens including the jagged-pins were made by co-curing process. Diameters of the jagged-pins were 0.3, 0.5 and 0.7 mm. The pin areal densities were set to 0.5 and 2.0% based on the interface area where the skin and stiffener meet. The specimens using 0.3 mm diameter normal (un-jagged) pins with 2.0% areal density were additionally fabricated and tested to investigate the pin shape effect on the pull-off strength. The pull-off strengths of specimens reinforced with 0.5% areal density by 0.3, 0.5, and 0.7 mm diameter pins were 45, 19 and 9% higher than those of un-reinforced specimens, respectively. In case with 2.0% pin areal density, the strengths were 127, 45, and 11% higher than those of un-reinforced specimens, respectively. The test results show that the higher pin areal density results in the higher strength when the pin diameter is the same. When the pin areal density is the same, the smaller pin diameter leads to higher strength. When the joints using jagged-pins and normal pins in 2.0% areal density with 0.3 mm diameter, the joints of jagged-pins showed the 64% higher strength. From the results of this study, it was confirmed that jagged-pin reinforcement can be an effective method for improving the pull-off strength of composite hat-joint.

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

3-D Numerical Analysis for the Verification of Bearing Mechanism and Bearing Capacity Enhancement Effect on the Base Expansion Micropile (선단 확장형 마이크로파일의 3차원 수치해석을 통한 지지 메커니즘 및 지지력 증대효과 검증)

  • Lee, Seokhyung;Han, Jin-Tae;Jin, Hyun-Sik;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.2
    • /
    • pp.19-31
    • /
    • 2021
  • Micropiles are cast-in-place piles with small diameters. The advantage of micropile is low construction expense and simple procedures, so it is widely applied to existing buildings and structures for the reinforcement of foundation and seismic performances. The base expansion structure has been developed following the original mechanism of horizontal expansion steps under compressive loading. This kind of structure can be installed at the pile end to improve the bearing capacity by tip area enlargement and horizontal force increment to the pile surface area. However, 'Micropile with base expansion structure' cannot be put into practical use, because detailed verification for the developed technique has not been conducted so far. In this research, 3-D numerical analysis was conducted to figure out the bearing mechanism of base expansion micropile and to verify the bearing capacity improvement compared to the general micropiles. 3-D modelling of micropile with base expansion structure was carried out and input parameter was determined. Bearing mechanism induced by base expansion structure was analyzed by lab-scale modelling, and bearing capacity improvement was verified by field-scale analysis.

A Study on the Change of Slope Safety Factor according to the Anchor Construction Interval (앵커 시공 간격에 따른 비탈면 안전율 변화 연구)

  • Kim, Jinhwan;Lee, Jonghyun;Kwon, Oil;Kim, Wooseok
    • The Journal of Engineering Geology
    • /
    • v.30 no.4
    • /
    • pp.515-523
    • /
    • 2020
  • If the safety factor does not secure the safety factor suggested in the design standard at the slope design stage, the safety factor is secured by installing an anchor. Stability analysis is used to verify the effect of reinforcing the slope of the anchor, but in this process, most of the anchor construction intervals are assumed to be equal and analyzed. For economical and effective slope reinforcement, stability analysis is required by adjusting the anchor construction interval. In this study, the effect of the anchor construction interval on the change of the safety factor of the slope was identified. Stability analysis was performed by setting a virtual slope with two berms and different anchor construction intervals. As a result of the analysis, the stability of the slope is secured when the anchor spacing of the lower surface is narrowed and the anchor gaps of the upper and middle surfaces are wider than when anchors are installed at the same intervals on the upper, middle, and lower surfaces of the slope. The result was a 15% reduction in the amount of anchors. This means that, rather than reinforcing anchors at the same intervals, it is economical and effective to have an economical and effective reinforcement effect to vary the anchor construction intervals according to the slope characteristics.

Impact of ZrO2 nanoparticles addition on flexural properties of denture base resin with different thickness

  • Albasarah, Sara;Al Abdulghani, Hanan;Alaseef, Nawarah;al-Qarni, Faisal D.;Akhtar, Sultan;Khan, Soban Q.;Ateeq, Ijlal Shahrukh;Gad, Mohammed M.
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.4
    • /
    • pp.226-236
    • /
    • 2021
  • PURPOSE. This study aimed to evaluate the effect of incorporating zirconium oxide nanoparticles (nano-ZrO2) in polymethylmethacrylate (PMMA) denture base resin on flexural properties at different material thicknesses. MATERIALS AND METHODS. Heat polymerized acrylic resin specimens (N = 120) were fabricated and divided into 4 groups according to denture base thickness (2.5 mm, 2.0 mm, 1.5 mm, 1.0 mm). Each group was subdivided into 3 subgroups (n = 10) according to nano-ZrO2 concentration (0%, 2.5%, and 5%). Flexural strength and elastic modulus were evaluated using a three-point bending test. One-way ANOVA, Tukey's post hoc, and two-way ANOVA were used for data analysis (α = .05). Scanning electron microscopy (SEM) was used for fracture surface analysis and nanoparticles distributions. RESULTS. Groups with 0% nano-ZrO2 showed no significant difference in the flexural strength as thickness decreased (P = .153). The addition of nano-zirconia significantly increased the flexural strength (P < .001). The highest value was with 5% nano-ZrO2 and 2 mm-thickness (125.4 ± 18.3 MPa), followed by 5% nano-ZrO2 and 1.5 mm-thickness (110.3 ± 8.5 MPa). Moreover, the effect of various concentration levels on elastic modulus was statistically significant for 2 mm thickness (P = .001), but the combined effect of thickness and concentration on elastic modulus was insignificant (P = .10). CONCLUSION. Reinforcement of denture base material with nano-ZrO2 significantly increased flexural strength and modulus of elasticity. Reducing material thickness did not decrease flexural strength when nano-ZrO2 was incorporated. In clinical practice, when low thickness of denture base material is indicated, PMMA/nano-ZrO2 could be used with minimum acceptable thickness of 1.5 mm.

Simulation of Cracking Behavior Induced by Drying Shrinkage in Fiber Reinforced Concrete Using Irregular Lattice Model (무작위 격자 모델을 이용한 파이버 보강 콘크리트의 건조수축 균열 거동 해석)

  • Kim, Kunhwi;Park, Jong Min;Bolander, John E.;Lim, Yun Mook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.4A
    • /
    • pp.353-359
    • /
    • 2010
  • Cementitious matrix based composites are vulnerable to the drying shrinkage crack during the curing process. In this study, the drying shrinkage induced fracture behavior of the fiber reinforced concrete is simulated and the effects of the fiber reinforcement conditions on the fracture characteristics are analysed. The numerical model is composed of conduit elements and rigid-body-spring elements on the identical irregular lattice topology, where the drying shrinkage is presented by the coupling of nonmechanical-mechanical behaviors handled by those respective element types. Semi-discrete fiber elements are applied within the rigid-body-spring network to model the fiber reinforcement. The shrinkage parameters are calibrated through the KS F 2424 free drying shrinkage test simulation and comparison of the time-shrinkage strain curves. Next, the KS F 2595 restrained drying shrinkage test is simulated for various fiber volume fractions and the numerical model is verified by comparison of the crack initiating time with the previous experimental results. In addition, the drying shrinkage cracking phenomenon is analysed with change in the length and the surface shape of the fibers, the measurement of the maximum crack width in the numerical experiment indicates the judgement of the crack controlling effect.

A Study on the Optimization of the Mix Proportions of High Strength Concrete Fire-Resistant Reinforcement Using Orthogonal Array Table (직교배열표를 이용한 고강도콘크리트 내화성능 보강재의 배합 최적화 연구)

  • Lee, Mun-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.179-186
    • /
    • 2009
  • The peculiarity pointed out for high strength concrete is the occurrence of spalling during a fire. Recently, there are many efforts such as development of all types of spalling reducing materials and other innovative materials in various fields. Need is now to examine the adequate mixing proportions of these materials. This study intended to derive experimentally and statistically mix proportions that can represent the basic quality requirements as well as the optimal effects on the fire-resistance for 4 types of functional materials that are metakaolin, waste tire chip, polypropylene fiber and steel fiber. Here, the tests were planned through an optimal test method using an orthogonal array table with 4 parameters and 3 levels. The statistical analysis adopted the response surface analysis method. Results verified mutual complementary contribution between the materials when using a combination of the functional materials selected as parameters for the strengthening of the fire-resistance of 80 MPa-class high strength concrete. Besides, the optimal conditions of the fire-resistance strengthening materials derived through response surface analysis were a volumetric replacement of silica fume by 80% of metakaolin, a volumetric replacement of fine aggregates by 3% of tire waste chip, and an addition of 0.2% of the whole volume by polypropylene fiber without mixing of steel fiber. In such cases, the basic characteristics as well as the fire-resistant characteristics of high strength concrete were also satisfied.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.