• Title/Summary/Keyword: surface reinforcement

Search Result 686, Processing Time 0.025 seconds

Corrosion Resistance of Fe-Mn-Si-Ni-Cr-TiC Shape Memory Alloy for Reinforcement of Concrete (콘크리트 보강재용 Fe-Mn-Si-Ni-Cr-TiC계 형상기억합금의 내식성)

  • Joo, Jaehoon;Lee, Hyunjoon;Kim, Dohyoung;Lee, Wookjin;Lee, Junghoon
    • Journal of Surface Science and Engineering
    • /
    • v.52 no.6
    • /
    • pp.364-370
    • /
    • 2019
  • Fe-Mn-Si-Ni-Cr-TiC alloys have a shape memory property, recovering initial shape by heating. With an aim to improve a durability and stability of building and infrastructure, this Fe-based shape memory alloy (FSMA) can be employed to reinforce concrete structure with creation of compressive residual stress. In this work, corrosion resistance of FSMA was compared with general rebar and S400 carbon steel to evaluate the stability in concrete environment. Potentiodynamic polarization test in de-ionized water, tap-water and 3.5 wt.% NaCl solution with variations of pH was used to compare the corrosion resistance. FSMA shows better corrosion resistance than rebar and S400 in tested solutions. However, Cl-containing solution is critical to significantly reduce the corrosion resistance of FSMA. Therefore, though FSMA can be a promising candidate to replace the rebar and S400 for the reinforcement of concrete structure, serious cautions are required in marine environments.

Effect of Tio2 particles on the mechanical, bonding properties and microstructural evolution of AA1060/TiO2 composites fabricated by WARB

  • Vini, Mohamad Heydari;Daneshmand, Saeed
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.99-107
    • /
    • 2020
  • Reinforced aluminum alloy base composites have become increasingly popular for engineering applications, since they usually possess several desirable properties. Recently, Warm Accumulative Roll Bonding (WARB) process has been used as a new novel process to fabricate particle reinforced metal matrix composites. In the present study, TiO2 particles are used as reinforcement in aluminum metal matrix composites fabricated through warm accumulative roll bonding process. Firstly, the raw aluminum alloy 1060 strips with TiO2 as reinforcement particle were roll bonded to four accumulative rolling cycles by preheating for 5 min at 300℃before each cycle. The mechanical and bonding properties of composites have been studied versus different volume contents of TiO2 particles by tensile test, peeling test and vickers micro-hardness test. Moreover, the fracture surface and peeling surface of samples after the tensile test and peeling test have been studied versus different amount of TiO2 volume contents by scanning electron microscopy. The results indicated that the strength and the average vickers micro-hardness of composites improved by increasing the volume content of TiO2 particles and the amount of their elongation and bonding strength decreased significantly.

Bond Splitting Strength and Behavior of GFRP Reinforcement with Roughened Surface (거친표면 GFRP 보강근의 쪼갬부착파괴강도 및 거동 고찰)

  • Moon, Do-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.2
    • /
    • pp.23-29
    • /
    • 2011
  • In this experimental study, bond splitting strength and behavior were evaluated through pull-out tests. The tests were conducted on a GFRP rebar with roughened surface which was produced by Canadian manufacturer. The used variables in this study were rebar diameter, cover depth and compressive strength of concrete. For each variable, five specimens were made and tested to obtain good results. The bond splitting behavior was investigated from the relationship of pull-out force and slip. The experimental bond splitting strength was compared with the predicted strength obtained from the equations presented by some researchers. The results of the comparison demonstrated that the strength could be predicted well by using the Harajli et al's equation.

Probabilistic analysis of anisotropic rock slope with reinforcement measures

  • Zoran Berisavljevic;Dusan Berisavljevic;Milos Marjanovic;Svetlana Melentijevic
    • Geomechanics and Engineering
    • /
    • v.34 no.3
    • /
    • pp.285-301
    • /
    • 2023
  • During the construction of E75 highway through Grdelica gorge in Serbia, a major failure occurred in the zone of reinforced rock slope. Excavation was performed in highly anisotropic Paleozoic schist rock formation. The reinforcement consisted of the two rows of micropile wall with pre-stressed anchors. Forces in anchors were monitored with load cells while benchmarks were installed for superficial displacement measurements. The aim of the study is to investigate possible causes of instability considering different probability distributions of the strength of discontinuities and anchor bond strength by applying different optimization techniques for finding the critical failure surface. Even though the deterministic safety factor value is close to unity, the probability of failure is governed by variability of shear strength of anisotropic planes and optimization method used for locating the critical sliding surface. The Cuckoo search technique produces higher failure probabilities compared to the others. Depending on the assigned statistical distribution of input parameters, various performance functions of the factor of safety are obtained. The probability of failure is insensitive to the variation of bond strength. Different sampling techniques should yield similar results considering that the sufficient number of safety factor evaluations is chosen to achieve converged solution.

Property of Concrete Surface layer Using Self-Cleaning Silicate Concrete Impregnant (Self-Cleaning 실리케이트계 표면보호제를 적용한 콘크리트 표층부의 특성)

  • Song, Hun;Lee, Jong-Kyu;Chu, Yong-Sik
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.1 no.3
    • /
    • pp.233-239
    • /
    • 2013
  • This study is interested in manufacturing the self-cleaning silicate concrete surface impregnant including tetra ethyl ortho silicate, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. The concrete surface layer change and static contact angel was tested for the review of application. The result of this study shows that the effective silicate is tetra ethyl ortho silicate and lithium silicate. The adhesion in tension is satisfied with performance requirement of KS standard but the reinforcement of concrete substrate is slight. So, The self-cleaning silicate concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

A Study on the Reinforcing Effect Analysis of Aging Reservoir Reinforced with Surface Stabilizer (표층안정재로 보강된 노후 저수지의 보강효과 분석에 관한 연구)

  • Park, Seonghun;Seo, Segwan;Cho, Daesung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.9
    • /
    • pp.5-14
    • /
    • 2020
  • This study analyzed the reinforcement effect by conducting laboratory test, model test and program analysis to utilize the surface stabilizer used for the restoration work of collapsed slopes as a reinforcing material for aging reservoirs that exhibits a curing reaction similar to cement. Based on the results of the laboratory test, a model test and program analysis were performed by applying 9% of the mixing ratio. As a result, when the surface stabilizer was used in aging reservoir, it was found that the flow of water only occurred on part of the slope and underground in reservoir. And the water flow could be reduced inside the reservoir. In addition, it was analyzed that the seepage discharge could be reduced by about 42% and the saturated area within the reservoir by about 73%, thereby securing the stability of the aged reservoir.

Finite Element Analysis of the Direct Shear Test (직접 전단시험의 유한 요소 해석)

  • 이장덕
    • Geotechnical Engineering
    • /
    • v.12 no.6
    • /
    • pp.21-36
    • /
    • 1996
  • The stress transfer mechanism between soil and grid reinforcements involves two basic mechanism : frictional soil resistance and passive soil resistance. However the mechanism of the passive soil resistance is very complex to understand. To study the failure mechanism of ribbed reinforcement, the direct shear tests which are dominated by passive soil resistance are analyzed by using the finite element method. The finite element method is used to examine the effects of ribs on this passive soil resistance development and the met hanism of failure. The calculated behavior of the ribbed reinforcement is compared with the measured behavi or. Comparisons between the measured and the simulated strain pat terns, failure modes and load displacement relationship are presented. The behavior of the ribbed reinforcements in a cohesive soil is predicted on the basis of a good agreement between the measured and the Predicted behavior of the Ottawa sand.

  • PDF

Tribological performance of UHMWPE reinforced with carbon nanotubes in bovine serum

  • Zoo, Yeong-Seok;Lim, Dae-Soon
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.363-364
    • /
    • 2002
  • Although the factors that cause the failure of orthopedic implants were not clearly determined, it was reported that the shapes of wear debris affect the tribological behavior of artificial implant. Many researches were conducted to examine the wear mechanism by debris but the role of debris shape in inflammatory reaction remains unclear. To observe the debris shape by addition of reinforcement, carbon nanotubes ( CNTs ) were added to ultra high molecular weight polyethylene ( UHMWPE ) to investigate the reinforcement effect of CNTs. CNTs which have a diameter of about 10-50 nm, while their length is about 3-5 nm were produced by the catalytic decomposition of the acetylene gas using a tube furnace. Plate on disc type wear test were performed to evaluate the tribological performance of UHMWPE composites reinforced with CNTs in lubricating condition ( bovine serum ). The wear losses of CNT added UHMWPE in bovine serum were significantly reduced. Worn surface and wear debris of UHMWPE with CNTs and without CNTs were compared to investigate the reinforcement effect of CNT on tribological behavior.

  • PDF

A Study on Verification of the FRP Grouting Effect using 2D Resistivity Survey and Seismic Refraction Methods (지표물리탐사 기법을 이용한 FRP보강 그라우팅 공법의 보강효과 확인에 관한 사례연구)

  • Park, Jong-Ho;Han, Hyun-Hee;Chae, Hwi-young;Kim, Ik-Hee;Cho, Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.199-206
    • /
    • 2000
  • The grout-effect evaluation of the ground reinforcement technique, which has been widely applied to civil engineering and construction fields, is not established for the guidelines of choosing the efficient evaluation method, and in fact the experts have little effort to determine the reinforcement effect quantitatively. The evaluation of the grout was carried out by experiments on core specimen and drilling, which is impossible to evaluate grout-reinforcement effect quantitatively. This paper presents an example on verification of FRP grout-effect using geophysical prospecting on ground surface, which is 2D resistivity survey that easily visualize survey results with color graphics and seismic refraction method that interprets the subsurface seismic velocity structure.

  • PDF

Influence of Soil Nailing Angle on Slope Reinforcement Effect by Finite Difference Analysis (유한차분해석을 통한 쏘일네일링 설치각도가 사면 보강효과에 미치는 영향)

  • You, Kwang-Ho;Min, Kyoung-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.8
    • /
    • pp.27-36
    • /
    • 2013
  • LEM (Limit Equilibrium Method) based programs are commonly used for the designs of soil nailing as a slope reinforcement. However, there is a drawback that the interaction between ground and soil nailing is not properly reflected in those programs, which needs to be solved. For economical constructions and designs, research is also required on the support pattern of soil nailing. In this study, therefore, reinforcement effects of soil nailing were compared and analyzed by performing finite difference analyses which could properly consider the interaction between ground and soil nailing. As a result, when the angle from slope to nail is $90^{\circ}$, failure slip surface becomes the largest and thus the factor of safety becomes maximum.