• Title/Summary/Keyword: surface reflection model

Search Result 171, Processing Time 0.023 seconds

Comparison of Moment Method/Monte-Carlo Simulation and PO for Bistatic Coherent Reflectivity of Sea Surfaces (바다 표면의 Bistatic Coherent Reflectivity 계산을 위한 Monte-Carlo/모멘트 법과 PO 모델 비교)

  • Kim Sang-Keun;Oh Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.1 s.104
    • /
    • pp.39-44
    • /
    • 2006
  • This paper proposes a method of moments(MoM)/Monte-Carlo simulation and Physical Optics(PO) model to determine Bistatic Coherent Reflectivity of sea surfaces at various wind speeds. For the MoM simulation, a Gaussian random rough sea surface was generated based on the data of Tae-An ocean at various wind speeds and sea surface heights. The numerical results of the MoM/Monte Carlo simulations were used to verify the validity region of the PO model. It was found that the numerical result for a flat surface agrees quite well with the Fresnel reflection coefficient. The validity of the PO model on the rough sea surface is shown by using ray tracing method.

Directional Control of Radiation Heat Transfer from Solid Surface Using Grating Composed of Parallel Elliptical Cylinders -Directional Control of Energy Concetration- (타원주격자를 사용한 고체면에서의 복사열전달의 방향제어-에너지 집중 방향제어-)

  • Go, Heung;Hidetoshi Masuda;Jo, Byeong Su;Gang, Yeong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.9
    • /
    • pp.2933-2943
    • /
    • 1996
  • A grating composed of elliptical cylinders (GEC), specially designed, is applicable to control of radiation heat transfer from a heated surface, as reported in our previous work. In this study, an analysis of radiation heat transfer is performed for a physical model in which the GEC is placed in front of a heated black-base surface and the major axes of the elliptical cylinders are inclined as a certain angle from the normal to the row of elliptical cylinders. Numerical solutions are obtained. Variations of the direction and the radiative energy concentration with slant angle of the major axis are shown for some parameters. It is verified that the GEC is able to widely change the direction of radiation heat transfer from the heated surface.

Experimental Study on Geometry of a Microlayer During Single-Bubble Nucleate Boiling (단일기포 핵비등 시 미세액막층 구조에 대한 실험적 연구)

  • Jeong, Seunghyuck;Jung, Satbyoul;Kim, Hyungdae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.6
    • /
    • pp.519-526
    • /
    • 2015
  • To measure the physical parameters of the simple microlayer model for the prediction of the heat flux and heat transfer rate due to the evaporation of the microlayer during nucleate boiling, the microlayer geometry was experimentally examined. The parameters, including initial thickness, moving velocity and microlayer radius, were measured by total reflection and interferometry techniques using a laser. Single-bubble nucleate boiling experiments were conducted using saturated water on a horizontal surface under atmospheric pressure. The geometric characteristics of the microlayer underneath the bubbles periodically nucleating at a nucleation site at an average heat flux of $200kW/m^2$ were analyzed. The experimental results in the present study show that the maximum initial thickness of the microlayer and the horizontal moving velocity are $5.4{\mu}m$ and 0.12 m/s, respectively.

SIMULATION OF CLOUD'S VISIBLE REFLECTION USING MODIS CLOUD PRODUCTS

  • Ham, Seung-Hee;Sohn, Byung-Ju
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.668-671
    • /
    • 2006
  • Radiative transfer modeling of ice clouds is developed. Ice clouds located near tropopause reflect most of sunlight, thus atmospheric and surface effects can be minimized. Cloud properties such as cloud optical thickness (COT) and effective radius are important parameters to determine the magnitude of reflectance, while atmospheric and surface parameters rarely affect reflectance value. For selected homogeneous cloud pixels of MODerate Resolution Imaging Spectroradiometer (MODIS) observation, reflectances are calculated using MODIS cloud products as inputs of radiative transfer model (RTM). For three types of phase function (Henyey-Greenstein, Garcia-Siewert, Baum) calculated reflectances are compared with observations for validation. All cases show linear relationship between simulated values and measured values, however each represent different bias and slope. The result shows that phase function determine angular distribution of reflectance.

  • PDF

Wet adhesion and rubber friction in adhesive pads of insects

  • Federle, Walter
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.31-42
    • /
    • 2004
  • Many animals possess on their legs adhesive pads, which have undergone evolutionary optimization to be able to attach to variable substrates and to control adhesive forces during locomotion. Insect adhesive pads are either relatively smooth or densely covered with specialized adhesive hairs. Theoretical models predict that adhesion can be increased by splitting the contact zone into many microscopic, elastic subunits, which provides a functional explanation for the widespread 'hairy' design. In many hairy and all smooth attachment systems, the adhesive contact is mediated by a thin film of liquid secretion between the cuticle and the substrate. By using interference reflection microscopy (IRM), the thickness and viscosity of the secretion film was estimated in Weaver ants (Oecophylla smaragdina). 'Footprint' droplets deposited on glass are hydrophobic and form low contact angles. IRM of insect pads in contact showed that the adhesive liquid is an emulsion consisting of hydrophilic, volatile droplets dispersed in a persistent, hydrophobic phase. I tested predictions derived from film thickness and viscosity by measuring friction forces of Weaver ants on a smooth substrate. The measured friction forces were much greater than expected assuming a homogenous film between the pad and the surface. The findings indicate that the rubbery pad cuticle directly interacts with the substrate. To achieve intimate contact between the cuticle and the surface, secretion must drain away, which may be facilitated by microfolds on the surface of smooth insect pads. I propose a combined wet adhesion/rubber friction model of insect surface attachment that explains both the presence of a significant static friction component and the velocity-dependence of sliding friction.

  • PDF

Tuning the Interference Color with PECVD Prepared DLC Thickness (PECVD를 이용한 DLC 두께 제어에 따른 간섭색 구현)

  • Park, Saebom;Kim, Kwangbae;Kim, Hojun;Kim, Chihwan;Choi, Hyun Woo;Song, Ohsung
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.403-408
    • /
    • 2021
  • Various surface colors are predicted and implemented using the interference color generated by controlling the thickness of nano-level diamond like carbon (DLC) thin film. Samples having thicknesses of up to 385 nm and various interference colors are prepared using a single crystal silicon (100) substrate with changing processing times at low temperature by plasma-enhanced chemical vapor deposition. The thickness, surface roughness, color, phases, and anti-scratch performance under each condition are analyzed using a scanning electron microscope, colorimeter, micro-Raman device, and scratch tester. Coating with the same uniformity as the surface roughness of the substrate is possible over the entire experimental thickness range, and more than five different colors are implemented at this time. The color matched with the color predicted by the model, assuming only the reflection mode of the thin film. All the DLC thin films show constant D/G peak fraction without significant change, and have anti-scratch values of about 19 N. The results indicate the possibility that nano-level DLC thin films with various interference colors can be applied to exterior materials of actual mobile devices.

Change Attention-based Vehicle Scratch Detection System (변화 주목 기반 차량 흠집 탐지 시스템)

  • Lee, EunSeong;Lee, DongJun;Park, GunHee;Lee, Woo-Ju;Sim, Donggyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.27 no.2
    • /
    • pp.228-239
    • /
    • 2022
  • In this paper, we propose an unmanned vehicle scratch detection deep learning model for car sharing services. Conventional scratch detection models consist of two steps: 1) a deep learning module for scratch detection of images before and after rental, 2) a manual matching process for finding newly generated scratches. In order to build a fully automatic scratch detection model, we propose a one-step unmanned scratch detection deep learning model. The proposed model is implemented by applying transfer learning and fine-tuning to the deep learning model that detects changes in satellite images. In the proposed car sharing service, specular reflection greatly affects the scratch detection performance since the brightness of the gloss-treated automobile surface is anisotropic and a non-expert user takes a picture with a general camera. In order to reduce detection errors caused by specular reflected light, we propose a preprocessing process for removing specular reflection components. For data taken by mobile phone cameras, the proposed system can provide high matching performance subjectively and objectively. The scores for change detection metrics such as precision, recall, F1, and kappa are 67.90%, 74.56%, 71.08%, and 70.18%, respectively.

Numerical Simulation of Bubble and Pore Generations by Molten Metal Flow in Laser-GMA Hybrid Welding (레이저-GMA 하이브리드 용접에서 유동에 의한 기포 및 기공 형성 해석)

  • Cho, Won-Ik;Cho, Jung-Ho;Cho, Min-Hyun;Lee, Jong-Bong;Na, Suck-Joo
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.67-73
    • /
    • 2008
  • Three-dimensional transient simulation of laser-GMA hybrid welding involving multiple physical phenomena is conducted neglecting the interaction effect of laser and arc heat sources. To reproduce the bubble and pore formations in welding process, a new bubble model is suggested and added to the established laser and arc welding models comprehending VOF, Gaussian laser and arc heat source, recoil pressure, arc pressure, electromagnetic force, surface tension, multiple reflection and Fresnel reflection models. Based on the models mentioned above, simulations of laser-GMA hybrid butt welding are carried out and besides the molten pool flow, top and back bead formations could be observed. In addition, the laser induced keyhole formation and bubble generation duo to keyhole collapse are investigated. The bubbles are ejected from the molten pool through its top and bottom regions. However, some of those are entrapped by solid-liquid interface and remained as pores. Those bubbles and pores are intensively generated when the absorption of laser power is largely reduced and consequently the full penetration changes to the partial penetration.

Development of an RF Signal Level Prediction Simulator for Radiowave Propagation in Natural Environments (비행체의 원격신호측정을 위한 전파환경을 고려한 RF 수신신호 예측 시뮬레이터 개발)

  • Hyun, Jong-Chul;Kim, Sang-Keun;Oh, Yi-Sok;Seo, Dong-Soo;Kim, Heung-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.725-733
    • /
    • 2010
  • A simulator is proposed in this paper for predicting the RF signal level after propagating over sea and land surfaces. Various sea and land types and transmit/receive antenna patterns, as well as the locus of the transmit antenna, are considered for this simulator. At first, microwave reflection characteristics of various sea surfaces have been computed, based on an empirical formula which is developed in this study for the relation between the sea surface roughness and wind speed. Then, microwave reflections from land surfaces such as forests, agricultural areas, and bare surfaces, are computed using the first-order vector radiative transfer theory. Finally, the signal paths over sea and land surfaces are found using the ray tracing technique and the digital elevation model, and the signal level received by a receiving antenna is computed by the using the reflection coefficients of sea and land surfaces and the signal paths.

Numerical analysis of acoustic field inside sonar dome by using a beam tracing method and the theory of elastic wave propagation (빔 추적기법과 다층구조에서의 탄성파 전파이론을 적용한 소나돔 내부 음장 수치해석)

  • Han, Seung-Jin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.2 s.25
    • /
    • pp.26-33
    • /
    • 2006
  • A sonar dome is basically designed and installed to protect sonar array from shocks, sea wave slaps and floating matters. The acoustic wave passing through sonar dome, however, can be distorted in magnitude and phase. This paper presents a numerical method for predicting the steady-state sound pressure on the surface of transducer array in the sonar dome and typical results of sonar beam pattern affected by sonar dome. A beam tracing model with phase information and a multi-layered elastic boundary model are involved. A full three-dimensional sonar dome is modeled as a GRP acoustic window, a rubber coated steel baffle and a rubber coated steel hull. A transducer array is modeled as thick steel cylinder. There are some assumptions such as incidence of plane wave, specular reflection on boundary and directionality of transducer element.