• Title/Summary/Keyword: surface reflection model

Search Result 171, Processing Time 0.028 seconds

Optimization of a numerical wave flume for efficient simulations

  • V. Kumaran;A.V. Mahalingaiah;Manu Manu;Subba Rao
    • Ocean Systems Engineering
    • /
    • v.13 no.4
    • /
    • pp.325-347
    • /
    • 2023
  • The present work investigates the wave generation and propagation in a 2-D wave flume to assess the effect of wave reflection for varying beach slopes by using a numerical tool based on computational fluid dynamics. At first, a numerical wave flume (NWF) is created with different mesh sizes to select the optimum mesh size for time efficient simulation. In addition, different beach slope conditions are introduced such as 1:3, 1:5 and numerical beach at the far end of the NWF to optimize the wave reflection solutions. In addition, several parameters are analysed in order to optimize the solutions. The developed numerical model and its key findings are compared with analytical and experimental surface elevation results and it reveals a good correlation. Finally, the recommended numerical solutions are validated with the experimental findings.

Estimation of surface reflectance properties and 3D shape recovery using photometric matching (물체의 면 반사특성 추정과 측광정합을 이용한 3차원 형상복구)

  • 김태은;류석현;송호근;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.7
    • /
    • pp.1633-1641
    • /
    • 1996
  • In this paper we propose a new method for anlayzing the properties of surface reflectance and reconstructing the shape of object using estimated reflectance parameters. We have investigated the hybrid reflectance surface which has specularreflection and diffuse reflection, which can be explained by Torrance-Sparrow model. Sample sphere made on one maerial is used to estimate the reflectance properties by using LMS algorithm. We can make the reference image which consists of surface normal and brightness value using estimated reflectance parameters, and thenarbitrary shape object made of the same material as sample can be reconstructed by matching with reference image. Photometric matching method proposed in this paper is robust because it mateches object image with the reference imageconsidering its neighbor brightness distribution. Also, in this paper plate diffuse illumination is used to remove intensity disparity with simple scheme. It is expected that the proposed algorithm can be applied to 3D recognition, vision inspection system and other fields.

  • PDF

Numerical Analysis of Damping Effect of Liquid Film on Material in High Speed Liquid Droplet Impingement

  • Sasaki, Hirotoshi;Ochiai, Naoya;Iga, Yuka
    • International Journal of Fluid Machinery and Systems
    • /
    • v.9 no.1
    • /
    • pp.57-65
    • /
    • 2016
  • By high speed Liquid Droplet Impingement (LDI) on material, fluid systems are seriously damaged, therefore, it is important for the solution of the erosion problem of fluid systems to consider the effect of material in LDI. In this study, by using an in-house fluid/material two-way coupled method which considers reflection and transmission of pressure, stress and velocity on the fluid/material interface, high-speed LDI on wet/dry material surface is simulated. As a result, in the case of LDI on wet surface, maximum equivalent stress are less than those of dry surface due to damping effect of liquid film. Empirical formula of the damping effect function is formulated with the fluid factors of LDI, which are impingement velocity, droplet diameter and thickness of liquid film on material surface.

Wave propagation at free surface in thermoelastic medium under modified Green-Lindsay model with non-local and two temperature

  • Sachin Kaushal;Rajneesh Kumar;Indu Bala;Gulshan Sharma
    • Structural Engineering and Mechanics
    • /
    • v.90 no.2
    • /
    • pp.209-218
    • /
    • 2024
  • The present paper is focused on the study of the propagation of plane waves in thermoelastic media under a modified Green-Lindsay (MG-L) model having the influence of non-local and two temperature. The problem is formulated for the considered model in dimensionless form and is explained by using the reflection phenomenon. The plane wave solution of these equations indicates the existence of three waves namely Longitudinal waves (LD-Wave), Thermal waves (T-wave), and Shear waves (SV-wave) from a stress-free surface. The variation of amplitude ratios is computed analytically and depicted graphically against the angle of incidence to elaborate the impact of non-local, two temperature, and different theories of thermoelasticity. Some particular cases of interest are also deduced from the present investigation. The present study finds applications in a wide range of problems in engineering and sciences, control theory, vibration mechanics, and continuum mechanics.

Stochastic Estimation of Acoustic Impedance of Glass-Reinforced Epoxy Coating

  • Kim, Nohyu;Nah, Hwan-Seon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.34 no.2
    • /
    • pp.119-127
    • /
    • 2014
  • An epoxy coating applied to the concrete surface of a containment building deteriorates in hazardous environments such as those containing radiation, heat, and moisture. Unlike metals, the epoxy coating on a concrete liner absorbs and discharges moisture during the degradations process, so it has a different density and volume during service. In this study, acoustic impedance was adopted for characterizing the degradation of a glass-reinforced epoxy coating using the acoustic reflection coefficient (reflectance) on a rough epoxy coating. For estimating the acoustic reflectance on a wavy epoxy coating surface, a probabilistic model was developed to represent the multiple irregular reflections of the acoustic wave from the wavy surface on the basis of the simulated annealing technique. A number of epoxy-coated concrete specimens were prepared and exposed to accelerated aging conditions to induce an artificial aging degradation in them. The acoustic impedance of the degraded epoxy coating was estimated successfully by minimizing the error between a waveform calculated from the mathematical model and a waveform measured from the surface of the rough coating.

Analysis of the Periodic Microstrip Phased Array Antenna (주기적 마이크로스트립 위상 배열의 특성 해석)

  • 조영수;김동현이상설
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.335-338
    • /
    • 1998
  • This paper presents calculated results for the infinite phased arrays of the probe-fed rectagualr microstrip patches. A numerical model that is based on a rigorous Green's function and galerkin solutionsis is described. In an arbitrary scan plane, the input impedance and the input reflection coefficient versus the scand angle are calculated. The effects of substrate parameters on the phased arry antenna are considered. The scan blindness phenomenon due to the surface wave is observed and the input impedance bandwidth in the arbitrary scan plane is calculated.

  • PDF

Investigation of the Validity of the Image Model for the Analysis of Spherical Wave Reflection

  • Suh, Jin-Sung;Cheung, Wan-Sup
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.3E
    • /
    • pp.27-34
    • /
    • 1998
  • The validity of the image model is investigated both analytically and experimentally in a half space with an infinite single reflecting surface present. This paper exploits the Sommerfeld integral that represents the exact solution for the reflected field in the half space. The solution is shown to be obtained by direct numerical integration which yields more accurate and stable results. The predicted results from the image model are compared to those from the direct numerical integration of the Sommerfeld integral. It is also experimentally demonstrated that the image model gives acceptably accurate results. It is of significance that this paper reveals analytical and experimental validation of using the image model except near-grazing incidence.

  • PDF

Study on the Applicability of High Frequency Seismic Reflection Method to the Inspection of Tunnel Lining Structures - Physical Modeling Approach - (터널 지보구조 진단을 위한 고주파수 탄성파 반사법의 응용성 연구 - 모형 실험을 중심으로 -)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Shin, Yong-Suk;Hyun, Hye-Ja;Jung, Hyun-Key
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.3
    • /
    • pp.37-45
    • /
    • 2000
  • In recent years two reflection methods, i.e. GPR and seismic Impact-Echo, are usually performed to obtain the information about tunnel lining structures composed of concrete lining, shotcrete, water barrier, and voids at the back of lining. However, they do not lead to a desirable resolution sufficient for the inspection of tunnel safety, due to many problems of interest including primarily (1) inner thin layers of lining structure itself in comparison with the wavelength of source wavelets, (2) dominant unwanted surface wave arrivals, (3) inadequate measuring strategy. In this sense, seismic physical modeling is a useful tool, with the use of the full information about the known physical model, to handle such problems, especially to study problems of wave propagation in such fine structures that are not amenable to theory and field works as well. Thus, this paper deals with various results of seismic physical modeling to enable to show a possibility of detecting the inner layer boundaries of tunnel lining structures. To this end, a physical model analogous to a lining structure was built up, measured and processed in the same way as performed in regular reflection surveys. The evaluated seismic section gives a clear picture of the lining structure, that will open up more consistent direction of research into the development of an efficient measuring and processing technology.

  • PDF

Classification of Measurement Methods of Surface Plasmon Resonance Biosensors by SK Index (SK 지수를 이용한 표면 플라즈몬 공명 바이오 센서의 측정방법의 분류)

  • Lee, Seung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.342-349
    • /
    • 2004
  • SK (SPR Kinds) index, which can categorize the complicated measurement methods of surface plasmon resonance by simple method, has been proposed and verified. SK index is composed of three digits, where each digit presents the type of immobilized ligand, the type of illumination and the kinds of varying parameter, sequentially. The measurement method of (33#) series among SK indices shows the possibility of the multi-sensing capability, by which the response of 2-dimensional array of immobilized ligands can be detected simultaneously. The proposed possibility of multi-sensing capability has been verified by the modeling that is based on Fresnel reflection model.

Real-Time Water Wave Simulation with Surface Advection based on Mass Conservancy

  • Kim, Dong-Young;Yoo, Kwan-Hee
    • International Journal of Contents
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, we present a real-time physical simulation model of water surfaces with a novel method to represent the water mass flow in full three dimensions. In a physical simulation model, the state of the water surfaces is represented by a set of physical values, including height, velocity, and the gradient. The evolution of the velocity field in previous works is handled by a velocity solver based on the Navier-Stokes equations, which occurs as a result of the unevenness of the velocity propagation. In this paper, we integrate the principle of the mass conservation in a fluid of equilateral density to upgrade the height field from the unevenness, which in mathematical terms can be represented by the divergence operator. Thus the model generates waves induced by horizontal velocity, offering a simulation that puts forces added in all direction into account when calculating the values for height and velocity for the next frame. Other effects such as reflection off the boundaries, and interactions with floating objects are involved in our method. The implementation of our method demonstrates to run with fast speed scalable to real-time rates even for large simulation domains. Therefore, our model is appropriate for a real-time and large scale water surface simulation into which the animator wishes to visualize the global fluid flow as a main emphasis.