• 제목/요약/키워드: surface recovery

검색결과 830건 처리시간 0.024초

Optimization and Evaluation of Organic Acid Recovery from Kraft Black Liquor Using Liquid-Liquid Extraction

  • Kwon, Hee Sun;Um, Byung Hwan
    • Korean Chemical Engineering Research
    • /
    • 제54권6호
    • /
    • pp.753-761
    • /
    • 2016
  • Liquid-liquid extraction (LLE) can be used for the recovery of acetic acid from black liquor prior to bioethanol fermentation. Recovery of value-added chemicals such as acetic-, formic- and lactic acid using LLE from Kraft black liquor was studied. Acetic acid and formic acid have been reported to be strong inhibitors in fermentation. The study elucidates the effect of three reaction parameters: pH (0.5~3.5), temperature ($25{\sim}65^{\circ}C$), and reaction time (24~48 min). Extraction performance using tri-n-octylphosphine oxide as the extractant was evaluated. The maximum acetic acid concentration achieved from hydrolyzates was 69.87% at $25^{\circ}C$, pH= 0.5, and 36 min. Factorial design was used to study the effects of pH, temperature, and reaction time on the maximum inhibitor extraction yield after LLE. The maximum potential extraction yield of acetic acid was 70.4% at $25.8^{\circ}C$, pH=0.6 and 37.2 min residence time.

초청정 클린룸 난류유동장내에서의 오염입자 비정상 전파거동에 관한 연구 (Study on the Unsteady Contaminated Particle Transportation in the Flow Field for the Super Clean Room)

  • 오명도;임학규;배귀남
    • 대한기계학회논문집
    • /
    • 제14권2호
    • /
    • pp.430-439
    • /
    • 1990
  • Steady state turbulent airflow and unsteady characteristics of generation, transportation, and recovery behavior of contaminate particles in the simplified 2 dimensional Vertical Laminar Flow (VLF) type clean room was numerically simulated using the low Reynolds number k-over bar.epsilon- turbulent model. Characteristics of airflow in VLF type clean room are greatly affected by the recirculation zone around working surface. The recirculation zone must be considered at the time of clean room design because the recirculation zone whose area increases with increment of inlet velocity exerts bad influence upon the performance of clean room in terms of particle contamination. The location of maximum particle concentration changes from the location of particle source to the recirculation zone, while averaged particle concentration is reduced exponentially with time. Recovery time of clean room with spontaneous particle generation source is inversely proportional to inlet velocity. We introduce nondimensionalized recovery time through the dimensional analysis, which can indicates the general performance of clean room with design structure change. It was identified that .tau. is independent of inlet velocity and background concentration. Therefore .tau. can be the simple factor to compare the different structure of clean room in terms of dynamic response to contamination and becomes larger with better structure of clean room.

폴리프로필렌 편성물의 역학적 성능과 염색견뢰도에 관한 연구 (A Study on the Mechanical Properties and Color Fastness of Polypropylene Knit)

  • 권명숙
    • 복식
    • /
    • 제58권1호
    • /
    • pp.1-8
    • /
    • 2008
  • The purpose of this study was to investigate the mechanical properties and hand values of polypropylene knit and to analyze its color-fastness for light, laundering and abrasion, comparing to nylon and polyester knits. The results of this study were as follows: 1. Polypropylene stretched more with less force than nylon and polyester and its elastic recovery and shape stability were better than nylon and polyester. 2. Polypropylene was more flexible than nylon and polyester. 3. Polypropylene stretched more easily for shearing but its recovery from shearing was less than nylon and polyester. 4. Polyester had smoother surface than nylon and polyester. 5. Polypropylene was compressed more easily than polyester with less force but less than nylon. Its recovery from compression was more than nylon and polyester. 6. Polypropylene had lower KOSHI and SHARI values and higher FUKURAMI value than nylon and polyester. It had better T.H.V. value than nylon but less than! polyester. 7. Color fastness of polypropylene for lanudering, light, and abrasion in wet and dry conditions was good except polypropylene dyed with red color.

Multi- effect air gap membrane distillation process for pesticide wastewater treatment

  • Pangarkar, Bhausaheb L.;Deshmukh, Samir K.;Thorat, Prashant V.
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.529-541
    • /
    • 2017
  • A multi-effect air gap membrane distillation (ME-AGMD) module for pesticide wastewater treatment is studied with internal heat recovery, sensible heat of brine recovery, number of stages and the use of fresh feed as cooling water in a single module is implemented in this study. A flat sheet polytetrafluroethylene (PTFE) membrane was used in the 4-stage ME-AGMD module. The maximum value of permeate flux could reach $38.62L/m^2h$ at feed -coolant water temperature difference about $52^{\circ}C$. The performance parameter of the module like, specific energy consumption and gain output ratio (GOR) was investigated for the module with and without heat recovery. Also, the module performance was characterized with respect to the separation efficiency of several important water quality parameters. The removal efficiency of the module was found to be >98.8% irrespective water quality parameters. During the experiment the membrane fouling was caused due to the deposition of the salt/crystal on the membrane surface. The membrane fouling was controlled by membrane module washing cycle 9 h and also by acidification of the feed water (pH=4) using 0.1M HCl solution.

습증기를 포함한 연소가스의 폐열회수를 위한 열교환기 성능 예측 (Performance Prediction of Heat Exchanger for Waste Heat Recovery from Humid Flue Gases)

  • 정동운;이상용;이한주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.276-281
    • /
    • 2000
  • A simulation program using the mass transfer correlation was constructed to analyze 1-D simplified condensing flow across the tube bank. Higher efficiency was anticipated by reducing the flue gas temperature down below the dew point where the water vapor in the flue gas is condensed at the surface of the heat exchanger; that is, the heat transfer by the latent heat is added to that by the sensible heat. Thus, there can be an optimum operating condition to maximize the heat recovery from the flue gas. The temperature rises of the flue gas and the cooling water between the inlet and the outlet of the tube bank were compared with the experimental data reported previously. The predicted results agree well with the experimental data. Using this simulation program, the parametric studies have been conducted fur various operating conditions, such as the velocities and temperatures of the vapor/gas mixture and the cooling water, the number of the rows, and the conductivity of the wall material.

  • PDF

대수층 저장·이동 및 회수에 의한 음용수 생산과정에서의 위해사건분석 (Hazardous event analysis in drinking water production using aquifer storage transfer and recovery)

  • 이상일;지현욱
    • 상하수도학회지
    • /
    • 제29권1호
    • /
    • pp.23-31
    • /
    • 2015
  • Aquifer storage transfer and recovery (ASTR) is a type of managed aquifer recharge which entails injecting water into a storage well and recovering it from a different well. It has effects of natural purification when injected water passes through aquifer medium, and can be a good way of supplying water especially in a region with poor surface water quality. This study is about an on-going effort to introduce ASTR as a solution to source water problems in coastal areas. A pilot study is being conducted in the delta of the Nakdong River. A proactive management system is incorporated to ensure the water qulity in the process of drinking water process. The system is based on the Hazard Analysis and Critical Control Point (HACCP) which is a tool originated from the food industry in order to assess hazards and establish control systems for the safety of food product. In this paper, we analyze hazardous events which can occur in the entire water supply system using ASTR as a first step to the incorporation of HACCP to drinking water production process.

어구재료용 신소재섬유의 물성분석 - 2 . 신소재섬유의 크리프특성 및 탄성회복도 - (Physical Properties Analysis of the High-Tech Fibers for Fishing Gear Materials - 2 . Creep Characteristics and Elastic Recovery of the High-tech Fibers -)

  • 김태호;고관서
    • 수산해양기술연구
    • /
    • 제29권3호
    • /
    • pp.191-199
    • /
    • 1993
  • In order to analysis creep characteristics and elastic recovery of the high-tech fibers for fishing gear materials, creep and elasticity tests were carried out on netting twines made of nylon, kevlar 29 and techmilon respectively. After creep tests, the rupture surface of raw materials was observed by scanning electron microscope(SEM). The results obtained are as follows: 1. Netting twines were arranged in order of creep rupture time as follow: techmilon, kevlar 29, nylon. The creep progressive pace was the fastest in techmilon. 2. In order of the creep elongating, netting twines were arranged as follows: nylon, techmilon, kevlar 29. 3. The rupture time T sub(r) decreased almost linearly with the increase of applied load L on the log-log scaled graph. The empirical equations computed for kevlar 29 and techmilon are as follows: T sub(r kevlar 29)=1.9512$\times$1037L super(-15.773). T sub(r techmilon)=2.7146$\times$1016L super(-6.831). 4. It was observed by SEM that creep was progressed in all netting twines. The difference of rupture morphology was recognized clearly in tensile and creep tests. 5. In order of the elastic recovery, netting twines were arranged as follows: techmilon, kevlar 29, nylon.

  • PDF

탄소나노튜브의 혼입량 변화가 고온에 노출된 시멘트 페이스트의 역학적 성능 회복에 미치는 영향 (Effects of Carbon nanotube Incorporation on the Mechanical Recovery of Portland Cement Paste Exposed to High Temperatures)

  • 서형원;박태훈;배성철
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.114-115
    • /
    • 2019
  • When concrete is exposed to fire, the decomposition of Portland cement paste results in critical damage to the concrete structure of a building. Although the behavior of cement pastes after heating provides crucial information with respect to the reuse of the building exposed to fire, the recovery process of the damaged concrete structure has not yet been fully elucidated. In addition, research on appropriate additives such as carbon nanotube (CNT) has been increasing recently, however, investigation of CNT incorporated cement paste after decomposition of CNT by high temperature is not fully investigated. In this study, we investigated the physicochemical properties of CNT incorporated cement paste under different temperatures (200℃, 500℃ and 800℃). Also, the effects of different rehydration conditions (20℃ 60% RH and in water for different curing times) on the recovery of the paste were studied. The changes in tensile and compressive strength, surface observation of the specimens were characterized. In addition, the decomposition and formation of hydrates in the paste due to the heating process were studied using X-ray diffraction.

  • PDF

비선형 전변동을 이용한 초점거리 변화 기반의 3 차원 깊이 측정 방법 (3D Shape Recovery Using Image Focus through Nonlinear Total Variation)

  • 무하마드 타릭 마흐무드;최영규
    • 반도체디스플레이기술학회지
    • /
    • 제12권2호
    • /
    • pp.27-32
    • /
    • 2013
  • Shape From Focus (SFF) is a passive optical technique to recover 3D structure of an object that utilizes focus information from 2D images of the object taken at different focus levels. Mostly, SFF methods use a single focus measure to compute image focus quality of each pixel in the image sequence. However, it is difficult to recover accurate 3D shape using a single focus measure, as different focus measures perform differently in diverse conditions. In this paper, a nonlinear Total Variation (TV) based approach is proposed for 3D shape recovery. To improve the result of surface reconstruction, several initial depth maps are obtained using different focus measures and the resultant 3D shape is obtained by diffusing them through TV. The proposed method is tested and evaluated by using image sequences of synthetic and real objects. The results and comparative analysis demonstrate the effectiveness of our method.

Performance Analysis of WHR-ORC Using Hydrocarbon Mixtures for 20kW Gross Power at Low Temperature

  • Kwakye-Boateng, Patricia;Yoon, Jung-In;Son, Chang-Hyo;Hui, Kueh Lee;Kim, Hyeon-Uk
    • 동력기계공학회지
    • /
    • 제18권6호
    • /
    • pp.140-145
    • /
    • 2014
  • Exploitation of renewable energies is on the increase to mitigate the reliance on fossil fuels and other natural gases with rocketing prices currently due to the depletion of their reserves not to mention their diverse consequences on the environment. Divergently, there are lots of industries "throwing" heat at higher temperatures as by products into the environment. This waste heat can be recovered through organic Rankine systems and converted to electrical energy with a waste heat recovery organic Rankine cycle system (WHR-ORC). This study uses the annual average condenser effluent from Namhae power plant as heat source and surface seawater as cooling source to analyze a waste heat recovery organic Rankine cycle using the Aspen HYSYS simulation software package. Hydrocarbon mixtures are employed as working fluid and varied in a ratio of 9:1. Results indicate that Pentane/Isobutane (90/10) mixture is the favorable working fluid for optimizing the waste heat recovery organic Rankine cycle at the set simulation conditions.