• Title/Summary/Keyword: surface radiation

Search Result 2,143, Processing Time 0.036 seconds

Photocatalytic Degradation of Methylene Blue by CNT/TiO2 Composites Prepared from MWCNT and Titanium n-butoxide with Benzene

  • Chen, Ming-Liang;Zhang, Feng-Jun;Oh, Won-Chun
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.651-657
    • /
    • 2008
  • In this study, CNT/$TiO_2$ composites were prepared using surface modified Multiwall carbon nanotube (MWCNT) and titanium n-butoxide (TNB) with benzene. The composites were characterized by nitrogen adsorption isotherms, scanning electron microscopy (SEM), X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), FT-IR spectra, and UV-vis absorption spectroscopy. The UV radiation induced photoactivity of the CNT/$TiO_2$ composites was tested using a fixed concentration of methylene blue (MB, $C_{16}H_{18}N_3S{\cdot}Cl{\cdot}3H_2O$) in an aqueous solution. Finally, it can be considered that the MB removal effect of the CNT/$TiO_2$ composites is not only due to the adsorption effect of MWCNT and photocatalytic degradation of $TiO_2$, but also to electron transfer between MWCNT and $TiO_2$.

A Study on the Microstructure and Thermal Sensor Devices of the Thin Films in the $BaTiO_3$ Systems ($BaTiO_3$계 세라믹의 미세구조와 열전센서에 관한 연구)

  • Song, Min-Jong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.135-139
    • /
    • 2005
  • Thin films of $BaTiO_3$ system were prepared by radio frequency(rf)/dc magnetron sputtering method. We have investigated crystal structure, surface morphology and PTCR(positive-temperature coefficient of resistance) characteristics of the specimen depending on second heat-treatment temperatures. Second heat treatments of the specimen were performed in the temperature range of 400 to $1350^{\circ}C$. X-ray diffraction patterns of $BaTiO_3$ thin films show that the specimen heat treated below $600^{\circ}C$ is an amorphous phase and the one heat treated above $1100^{\circ}C$ forms a poly-crystallization. In the specimen heat-treated at $1300^{\circ}C$, a lattice constant ratio (c/a) was 1.188. Scanning electron microscope(SEM) image of $BaTiO_3$ thin films of the specimen heat treated in between 900 and $1100^{\circ}C}$ shows a grain growth. At $1100^{\circ}C$, the specimen stops grain-growing and becomes a poly-crystallization.

  • PDF

The study of ignition characteristics of solid propellant using Arc Image Furnace (광학특성을 이용한 고체추진제 점화특성 연구)

  • Yoo, Ji-Chang;Kim, In-Chul;Jung, Jung-Yong;Lee, Kyung-Joo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.225-228
    • /
    • 2007
  • The objective of this study is to characterize design parameters of rocket igniters for composite, double base and nitramine propellant. Arc image furnace and fiber optics surface reflectometer were used to measure ignition delay time and reflected optical energy of several compositions of composite, double base and nitramine base rocket propellant at different pressure levels each other. The order of ignitability was double base > composite > Nitramine propellants at initial pressure of over 75 psia. The highest ignition energy was needed to ignite nitramine propellant, however, as the pressure increased up to the range of $75{\sim}400$ psia as the ignition delay time decreased abruptly. The absorbtion of radiation energy could be increased by the addition of small amount of opacifiers as carbon black, ZrC, WC and burning catalyst.

  • PDF

Nonlinear effects on motions and loads using an iterative time-frequency solver

  • Bruzzone, Dario;Gironi, C.;Grasso, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.20-26
    • /
    • 2011
  • A weakly nonlinear seakeeping methodology for predicting motions and loads is presented in this paper. This methodology assumes linear radiation and diffraction forces, calculated in the frequency domain, and fully nonlinear Froude-Krylov and hydrostatic forces, evaluated in the time domain. The particular approach employed here allows to overcome numerical problems connected to the determination of the impulse response functions. The procedure is divided into three consecutive steps: evaluation of dynamic sinkage and trim in calm water that can significantly influence the final results, a linear seakeeping analysis in the frequency domain and a weakly nonlinear simulation. The first two steps are performed employing a three-dimensional Rankine panel method. Nonlinear Froude-Krylov and hydrostatic forces are computed in the time domain by pressure integration on the actual wetted surface at each time step. Although nonlinear forces are evaluated into the time domain, the equations of motion are solved in the frequency domain iteratively passing from the frequency to the time domain until convergence. The containership S175 is employed as a test case for evaluating the capability of this methodology to correctly predict the nonlinear behavior related to wave induced motions and loads in head seas; numerical results are compared with experimental data provided in literature.

STUDY ON HEAT TRANSFER CHARACTERISTICS OF THE ONE SIDE-HEATED VERTICAL CHANNEL WITH INSERTED POROUS MATERIALS APPLIED AS A VESSEL COOLING SYSTEM

  • KURIYAMA, SHINJI;TAKEDA, TETSUAKI;FUNATANI, SHUMPEI
    • Nuclear Engineering and Technology
    • /
    • v.47 no.5
    • /
    • pp.534-545
    • /
    • 2015
  • In the very high temperature reactor (VHTR), which is a next generation nuclear reactor system, ceramics are used as a fuel coating material and graphite is used as a core structural material. Even if a depressurization accident occurs and the reactor power goes up instantly, the temperature of the core will change only slowly. This is because the thermal capacity of the core is so high. Therefore, the VHTR system can passively remove the decay heat of the core by natural convection and radiation from the surface of the reactor pressure vessel. The objectives of this study are to investigate the heat transfer characteristics of natural convection of a one-side heated vertical channel with inserted porous materials of high porosity and also to develop the passive cooling system for the VHTR. An experiment was carried out using a one-side heated vertical rectangular channel. To obtain the heat transfer and fluid flow characteristics of the vertical channel with inserted porous material, we have also carried out a numerical analysis using a commercial Computational Fluid Dynamics (CFD) code. This paper describes the thermal performances of the one-side heated vertical rectangular channel with an inserted copper wire of high porosity.

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change (열대 지역 Gross Moist Stability 특징 분석 및 미래 변화)

  • Kim, Hye-Won;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.141-150
    • /
    • 2014
  • This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.

The Characterization of Surface Ozone Concentrations in Seoul, Koera

  • Heo, Jeong-Sook;Kim, Dong-Sool
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.E3
    • /
    • pp.129-142
    • /
    • 2002
  • This paper provides a long-term perspective for ozone concentrations at 20 national air quality monitoring sites in Seoul from 1989 to 1998, which were managed by the Korean Ministry of Environment. Ozone episodes occurred more frequently in the east areas (Bangi, Guui, Seongsu, and Ssangmun) than in the west area (Guro and Oryu). When an ozone episode happened, hourly ozone concentrations over 80 ppb continued for an average of 4.0 hours at all sites. Annual variations in daily mean and maximum oBone concentrations showed broadly consistent upward trends at Ssangmun and Gwanaksan. Monthly mean ozone concentrations were the highest from May to June and the 99$^{th}$ and 95$^{th}$ percentile levels appeared higher during June, July, and August. The diurnal patterns of hourly mean ozone levels in urban areas showed typical photochemical formation and destruction, while the flat diurnal shape before 1996 at Gwanaksan indicated few significant photochemical reactions due to a lack of precursors of ozone. The occurrence of ozone over 80 ppb was ascribed to meteorological conditions such as high temperature, strong solar radiation, low relative humidity, and low wind speed with winds most frequently in a westerly direction.

Evaluation of Atmospheric Stability Classification Methods for Practical Use (대기안정도 분류방법의 평가 및 실용화에 관한 연구)

  • 김정수;최덕일;최기덕;박일수
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.369-376
    • /
    • 1996
  • Major atmospheric stability classification methods were evaluated with meteorological data obtained by scoustic sounding profiler (SODAR/RASS) in Seoul. The Psequill classificatio method, the method most widely used because of its good agreement in respect of synoptic scope under the steady state, fails to describe the time lag, the response time on stability by heating or cooling caused by daily insolation or noctrunal surface radiation. Horizontal and vertical standard deviation of wind fluctuation $(\sigma_A and \sigma_E)$ method tend to classify night-time stable condition (E, F class) into unstable condition (A, B class). The classification matrix tables for Vogt's vertical temperature difference and wind speed using method ($\Delta$T $\cdot$ U) and bulk Richardson number (Rb) were amended for practical use over Seoul. The modified tables for $\Delta$T $\cdot$ U and Rb method were made by using comprehensive frequency distribution from Pasquill's method and other existing results, and the correlation coefficient(r) was equal to 0.829. It was confirmed that atmospheric stability could be changed with monitoring site characteristics, height and vertical difference between sensors of monitoring station, and classification method itself.

  • PDF

The Use and Findings of Ultrasound in the Elbow Joint (주관절의 초음파 소견 및 이용)

  • Bae, Jung Yun;Lee, Seung-Jun;Lee, Kun Woo
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.6 no.2
    • /
    • pp.94-100
    • /
    • 2013
  • Musculoskeletal ultrasound has unique advantages that may be free from exposure to radiation, low price compared to MRI, outpatient procedure that can be easily accessible, and better accuracy combined with physical examination. Dynamic ultrasound performed with stress tests are known to be useful for detecting the hidden lesions in the tendons, ligaments, nerves. Ultrasound in the elbow can be used easily in the outpatient for evaluation of the joint surface and synovial space; diagnosis for tendon diseases such as lateral epicondylitis, medial epicondylitis and morbidity of peripheral nerves; guide for anterior-posterior bursal and intra-articular injections.

  • PDF

Allicin Reduces Adhesion Molecules and NO Production Induced by γ-irradiation in Human Endothelial Cells

  • Son, Eun-Wha;Cho, Chul-Koo;Pyo, Suhkneung
    • IMMUNE NETWORK
    • /
    • v.2 no.1
    • /
    • pp.6-11
    • /
    • 2002
  • Background: Inflammation is a frequent reaction following therapeutic irradiation. Since the upregulation of adhesion molecules on endothelial cell surface is known to be associated with inflammation, the expression of adhesion molecules is an important therapeutic target. Methods: Treatment of human umbilical endothelial cells (HUVECs) with ${\gamma}$-irradiation (${\gamma}IR$) induces the expression of adhesion proteins such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and E-selectin. Changes in the expression of these proteins on ${\gamma}$-irradiated HUVECs which had been treated previously with allicin were measured by ELISA. Results: In the present study, we demonstrate that allicin inhibits the ${\gamma}IR$ induced expression of ICAM-1, VCAM-1, and E-selectin on HUVEC in a dose-dependent manner. Allicin was also found to inhibit the ${\gamma}IR$ induced production of nitric oxide (NO). Conclusion: These data suggest that allicin has a therapeutic potential for the treatment of various inflammatory disorders associated with increase numbers of endothelial leukocyte adhesion molecules.