• Title/Summary/Keyword: surface protection

Search Result 1,024, Processing Time 0.029 seconds

METALLIC COATING PROTECTION ON DIELECTROMAGNETS PREPARED FROM MIXTURE OF HARD MAGNETIC POWDERS

  • Slusarek, Barbara;Wasenczuk, Andrzej
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.687-689
    • /
    • 1995
  • Our team works on mixture of hard magnetic materials. As hard magnetic material we used mixture of powders: melt-spun ribbon Nd-Fe-B, ferrite and Alnico. Their different mixtures are basic material for dielectromagnets under our investigation. Main disadvantage of dielectromagnets with Nd-Fe-B alloy powder as a component is a low corrosion resistance. Protection against corrosion is covering dielectromagnets with metallic or organic coating film. The coating film protects dielectromagnets from free particles on the surface and low resistance for mechanical stresses too. The surface of dielectromagnets prepared from mixture of powders if formed by metallic particles - powder of Nd-Fe-B and Alnico, particles of oxide - powder of ferrite and particles of resin - bonding materials. Team work on technology of laying the metallic coating on dielectromagnets prepared from mixture of mentioned powders. Papers show the results of initial investigation on metallic coating technology. It shows influence of type and used technology of the metallic coating film on magnetic properties of dielectromagnets.

  • PDF

Study of the improvement program for fire safety of FRP vessel (FRP선박의 화재안전성 개선방안 연구)

  • Gang, Byeong-Jae;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.4-18
    • /
    • 2007
  • The purpose of this study is to improve the fire safety characteristic of the FRP vessel. In this study, we analyzed the fire accidents of FRP vessel and investigated the ruels of domestic and other country for the structural fire protection standard of FRP vessel. We suggested the fire-retardent resin quality standard, and the improvement program for fire safety of FRP vessel.

  • PDF

Identification of C4orf32 as a Novel Type I Endoplasmic Reticulum Resident Membrane Protein (Type I 소포체 목표화 막단백질에 속하는 새로운 C4orf32 막단백질의 동정)

  • Lee, Seung-Hwan;Park, Sang-Won;Lee, Jin-A;Jang, Deok-Jin
    • Journal of Life Science
    • /
    • v.29 no.9
    • /
    • pp.949-954
    • /
    • 2019
  • Membrane topology is a key characteristic of membrane proteins. We previously reported the cloning of the chromosome 4 open-reading frame 32 (C4orf32) gene as a potential membrane protein; however, the cellular localization and membrane topology of C4orf32 was as yet unknown. In this study, we found that green fluorescent protein (GFP) fused to the C-terminus of C4orf32 (C4orf32-GFP) was localized to the endoplasmic reticulum (ER). We applied three tools to identify determinants of C4orf32 topology: protease protection, fluorescence protease protection (FPP), and an inducible system using the ternary complex between FK506 binding protein 12 (FKBP), rapamycin, and the rapamycin-binding domain of mTOR (FRB) (the FRB-rapamycin-FKBP system). Using protease protection and FPP assays, we found that the GFP tag in C4orf32-GFP was localized to the cytoplasmic surface of the ER membrane of HeLa cells. Protease protection and FPP assays are useful and complimentary tools for identifying the topology of GFP fusion membrane proteins. The FRB-rapamycin-FKBP system was also used to study the topology of C4orf32. In the absence of rapamycin, a monomeric red fluorescent protein-FKBP fusion (mRFP-FKBP) and C4orf32-GFP-FRB were localized to the cytoplasm and the ER membrane, respectively. However, in the presence of rapamycin, the mRFP-FKBP was shifted from the cytoplasm to the ER and colocalized with the C4orf32-GFP-FRB. These results indicate that the FRB moiety is facing the cytoplasmic surface of ER membrane. Overall, our results clearly suggest that C4orf32 belongs to the family of type I ER resident membrane proteins.

A Real Situation Experimental Study on The Thermal Protection Performance of Firefighter Clothes and Gloves (소방방화복 및 소방장갑의 열 보호 성능에 대한 실제 화재 실험 연구)

  • Lee, Won Jae;Kang, Gu Hyun;Jang, Yong Soo;Kim, Wonhee;Choi, Hyun Young;Kim, Jae Guk;Kim, MinJi;Seo, Kyo;kim, Do hee;Lee, Joo-young;Choi, Jung Yoon
    • Journal of the Korean Burn Society
    • /
    • v.21 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • Purpose: This study aimed to evaluate the thermal protective function of firefighter clothes and gloves through real scale fire simulations. Methods: Firstly, the fire simulation by real scale flame was performed for firefighter clothes. A manikin equipped with firefighter clothes was directly exposed to flames which energy average is 84 Kw/m2. for 22 seconds. Heat flux gauges attached on the body measured surface temperature elevation. Secondly, we also performed the other fire simulation by hot plate exposure to firefighter gloves. Firefighter gloves with heat flux gauges exposed hot plate which temperature is 300℃ in both dry and moist conditions. Primary outcome was surface temperature change of manikin body (first simulation) and hand (second simulation) over times. Results: In the first flame simulation, the surface temperature of face and shoulders elevated more rapidly comparing with the other body surface area when initial period of flame shutter open. After 18sec of shutter open, the surface temperature of upper trunk elevated rapildy. After shutter closure, high surface temperature kept continuously on right side of face and left shoulder. In the second hot plate simulation, fingers and palms showed higher surface temperature than the other areas of hands in the both dry and wet conditions. Conclusion: This study suggests that the real scale flame enables firefighter clothes to lose their heat protective function suddenly after 18 seconds. Additionally, the protective function of firefighter gloves were relatively weaker in the palmar side of fingers than the other parts of hand. There should be additional study for evaluate thermal protection performance of firefighter clothes. And, further effort for reinforce palmar side of fingers of firefighter gloves should be done.

Surface Temperature Control of an Insulated Horizontal Pipe under Thermal Radiation Environment (복사효과를 포함하는 수평관 표면의 온도제어)

  • Kang, Byung-Ha;Pi, Chang-Hun;Kim, Suk-Hyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 2011
  • Procedures for estimation of insulation thickness for a horizontal pipe for condensation control or personnel protection has been investigated, parallel to the previous work of a vertical wall case. Parameters include pipe diameter, emissivity, thermal conductivity, and operating temperatures. The results indicated that the surface emissivity plays a very important role in the design of insulation, specially for the case of high temperature application with low Bi. The effect of surface radiation in such case could be up to 65% of the total. Required insulation thickness for the surface temperature control increases as pipe diameter increases and as surface emissivity decreases. Adequate revision of specifications or standards to include newly invented insulation materials with high emissivity has been also suggested.

Chromate-free Hybrid Coating for Corrosion Protection of Electrogalvanized Steel Sheets

  • Jo, Du-Hwan;Kwon, Moonjae;Kim, Jong-Sang
    • Corrosion Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.15-19
    • /
    • 2012
  • Both electrogalvanized and hot-dip galvanized steel sheets have been finally produced via organic-inorganic surface coating process on the zinc surface to enhance corrosion resistance and afford additional functional properties. Recently, POSCO has been developed a variety of chromate-free coated steels that are widely used in household, construction and automotive applications. New organic-inorganic hybrid coating solutions as chromate alternatives are comprised of surface modified silicate with silane coupling agent and inorganic corrosion inhibitors as an aqueous formulation. In this paper we have prepared new type of hybrid coatings and evaluated quality performances such as corrosion resistance, spot weldability, thermal tolerance, and paint adhesion property etc. The electrogalvanized steels with these coating solutions exhibit good anti-corrosion property compared to those of chromate coated steels. Detailed components composition of coating solutions and experimental results suggest that strong binding between organic-inorganic hybrid coating layer and zinc surface plays a key role in the advanced quality performances.

Effect of High Temperature Annealing on the Characteristics of SiC Schottky Diodes (고온 열처리 공정이 탄화규소 쇼트키 다이오드 특성에 미치는 영향)

  • Cheong, Hui-Jong;Bahng, Wook;Kang, In-Ho;Kim, Sang-Cheol;Han, Hyun-Sook;Kim, Hyeong-Woo;Kim, Nam-Kyun;Lee, Yong-Jae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.818-824
    • /
    • 2006
  • The effects of high-temperature process required to fabricate the SiC devices on the surface morphology and the electrical characteristics were investigated for 4H-SiC Schottky diodes. The 4H-SiC diodes without a graphite cap layer as a protection layer showed catastrophic increase in an excess current at a forward bias and a leakage current at a reverse bias after high-temperature annealing process. Moreover it seemed to deviate from the conventional Schottky characteristics and to operate as an ohmic contact at the low bias regime. However, the 4H-SiC diodes with the graphite cap still exhibited their good electrical characteristics in spite of a slight increase in the leakage current. Therefore, we found that the graphite cap layer serves well as the protection layer of silicon carbide surface during high-temperature annealing. Based on a closer analysis on electric characteristics, a conductive surface transfiguration layer was suspected to form on the surface of diodes without the graphite cap layer during high-temperature annealing. After removing the surface transfiguration layer using ICP-RIE, Schottky diode without the graphite cap layer and having poor electrical characteristics showed a dramatic improvement in its characteristics including the ideality factor[${\eta}$] of 1.23, the schottky barrier height[${\Phi}$] of 1.39 eV, and the leakage current of $7.75\{times}10^{-8}\;A/cm^{2}$ at the reverse bias of -10 V.

Investigation on Galvanostatic Method to Protect Cavitation-corrosion Damage for Cu Alloy in Sea Water (해양환경 하에서 동합금의 캐비테이션-부식손상 방지를 위한 방식정전류 기법 연구)

  • Park, Jae-Cheul;Kim, Seong-Jong
    • Journal of the Korean institute of surface engineering
    • /
    • v.45 no.1
    • /
    • pp.25-30
    • /
    • 2012
  • The galvanostatic tests for corrosion protection are conducted at various applied current densities during 93,600 sec, and evaluated in terms of the variations in current density with time and in the potential at the applied current density. In addition, the corrosion damage depth is analyzed with 3D analysis optical microscope after galvanostatic tests. In this study, it was investigated to decide condition of the corrosion protection gavalnostatic method for Cu-Al alloy that has an excellent corrosion resistance. In the galvanostatic test under the cavitation environment, the energy was reflected or cancelled out by the collision with the oxygen gas generated by the oxygen reduction action. The surface observation showed neither the cavitation damage nor the electrochemical damage in the current density over 0.01 $A/cm^2$ in the dynamic state under the cavitation environment.

A STUDY FOR DOSE DISTRIBUTION IN SPENT FUEL STORAGE POOL INDUCED BY NEUTRON AND GAMMA-RAY EMITTED IN SPENT FUELS

  • Sohn, Hee-Dong;Kim, Jong-Kyung
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.4
    • /
    • pp.174-182
    • /
    • 2011
  • With the reactor operation conditions - 4.3 wt% $^{235}U$ initial enrichment, burn-up 55,000 MWd/MTU, average power 34 MW/MTU for three periods burned time for 539.2 days per period and cooling time for 100 hours after shut down, to set up the condition to determine the minimum height (depth) of spent fuel storage pool to shut off the radiation out of the spent fuel storage pool and to store spent fuels safely, the dose rate on the specific position directed to the surface of spent fuel storage pool induced by the neutron and gamma-ray from spent fuels are evaluated. The length of spent fuel is 381 cm, and as the result of evaluation on each position from the top of spent fuel to the surface of spent fuel storage pool, it is difficult for neutrons from spent fuels to pass through the water layer of maximum 219 cm (600 cm from the floor of spent fuel storage pool) and 419 cm (800 cm from the floor of spent fuel storage pool) for gamma-ray. Therefore, neutron and gamma-ray from spent fuels can pass through below 419 cm (800 cm from the floor) water layer directed to the surface of spent fuel storage pool.