• 제목/요약/키워드: surface parameters

검색결과 5,264건 처리시간 0.037초

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

Calibration and uncertainty analysis of integrated surface-subsurface model using iterative ensemble smoother for regional scale surface water-groundwater interaction modeling

  • Bisrat Ayalew Yifru;Seoro Lee;Woon Ji Park;Kyoung Jae Lim
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.287-287
    • /
    • 2023
  • Surface water-groundwater interaction (SWGI) is an important hydrological process that influences both the quantity and quality of water resources. However, regional scale SWGI model calibration and uncertainty analysis have been a challenge because integrated models inherently carry a vast number of parameters, modeling assumptions, and inputs, potentially leaving little time and budget to explore questions related to model performance and forecasting. In this study, we have proposed the application of iterative ensemble smoother (IES) for uncertainty analysis and calibration of the widely used integrated surface-subsurface model, SWAT-MODFLOW. SWAT-MODFLOW integrates Soil and Water Assessment Tool (SWAT) and a three-dimensional finite difference model (MODFLOW). The model was calibrated using a parameter estimation tool (PEST). The major advantage of the employed IES is that the number of model runs required for the calibration of an ensemble is independent of the number of adjustable parameters. The pilot point approach was followed to calibrate the aquifer parameters, namely hydraulic conductivity, specific storage, and specific yield. The parameter estimation process for the SWAT model focused primarily on surface-related parameters. The uncertainties both in the streamflow and groundwater level were assessed. The work presented provides valuable insights for future endeavors in coupled surface-subsurface modeling, data collection, model development, and informed decision-making.

  • PDF

레이저 표면 경화처리 긍정변수의 민감도 해석에 관한 연구 (A study on the sensitivity analysis of processing parameters for the laser surface hardening treatment)

  • 이세환;양영수
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2000년도 특별강연 및 추계학술발표대회 개요집
    • /
    • pp.260-263
    • /
    • 2000
  • A methodology is developed and many used to evaluate the response sensitivity of the thermal systems to variations in their design parameters. Technique for computing the sensitivity of temperature distributions to changes in processing parameters needed for deciding the more effective laser input parameters for laser surface hardening treatment are considered. In this study, a state equation governing the heat flow in laser surface treatment is analyzed using a three-dimensional finite element method and sensitivity data of the processing parameter obtained using a direct differentiation method applied for sensitivity analysis. The interesting processing parameter is taken as the laser scan velocity and characteristic beam radius( $r_{b}$) of the sensitivity of the temperature T versus v and $r_{b}$ is analyzed. And these sensitivity results obtained in another parameters are fixed condition. To verifying the numerical analysis results, hardened layer dimensions (width and depth) of the numerical analysis compared with the results of an experimental data.ata.

  • PDF

Parametric studies on smoothed particle hydrodynamic simulations for accurate estimation of open surface flow force

  • Lee, Sangmin;Hong, Jung-Wuk
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제12권1호
    • /
    • pp.85-101
    • /
    • 2020
  • The optimal parameters for the fluid-structure interaction analysis using the Smoothed Particle Hydrodynamics (SPH) for fluids and finite elements for structures, respectively, are explored, and the effectiveness of the simulations with those parameters is validated by solving several open surface fluid problems. For the optimization of the Equation of State (EOS) and the simulation parameters such as the time step, initial particle spacing, and smoothing length factor, a dam-break problem and deflection of an elastic plate is selected, and the least squares analysis is performed on the simulation results. With the optimal values of the pivotal parameters, the accuracy of the simulation is validated by calculating the exerted force on a moving solid column in the open surface fluid. Overall, the SPH-FEM coupled simulation is very effective to calculate the fluid-structure interaction. However, the relevant parameters should be carefully selected to obtain accurate results.

토양 표면에서의 편파별 후방 산란 계수 측정을 통한 산란 모델과 Inversion 알고리즘의 검증 (Verification of Surface Scattering Models and Inversion Algorithms with Measurements of Polarimetric Backscattering Coefficients of a Bare Soil Surface)

  • 홍진영;정승건;오이석
    • 한국전자파학회논문지
    • /
    • 제17권12호
    • /
    • pp.1172-1180
    • /
    • 2006
  • 본 논문은 풀이 없는 지표면에서의 후방 산란 계수(backscattering coefficients)를 측정하고, 이 측정 결과를 이용하여 여러 표면 산란 모델들과 inversion 알고리즘의 성능을 비교, 분석하였다. 우선, R-밴드 주파수($1.7{\sim}2.0GHz$)에서 완전 편파 scatterometer를 이용하여 풀 층이 없는 지표면에 대해서 편파별로 후방 산란 계수를 측정하고, 동시에 수분 함유량과 표면 거칠기를 측정하였다. 그런 다음 측정된 지표면 변수들을 표면 산란 모델들에 입력하여 후방 산란 계수를 계산하고, 이 계산 결과를 측정 결과와 비교 분석하였다. 또한, inversion 알고리즘들을 적용하여 측정된 편파별 후방 산란 계수로부터 수분 함유량을 추출하고, 이 추출된 수분 함유량이 현장에서 측정한 수분 함유량과 잘 맞는지 여부를 확인하였다. 표면 산란 모델들 중에서 정확도가 높은 모델들을 제시하였으며, inversion 모델들의 계산 결과도 나타내었다.

Evaluation of surface displacement equation due to tunnelling in cohesionless soil

  • Mazek, Sherif A.
    • Geomechanics and Engineering
    • /
    • 제7권1호
    • /
    • pp.55-73
    • /
    • 2014
  • The theoretical predictions of ground movements induced by tunnelling are usually based on the assumptions that the subsoil has the same soil densities. The theoretical prediction does not consider the impact of different sand soil types on the surface settlement due to tunnelling. The finite elements analysis (FEA) considers stress and strength parameters of the different sand soil densities. The tunnel construction requires the solution of large soil-structure interaction problem. In the present study, the FEA is used to model soil-tunnel system performance based on a case study to discuss surface displacement due to tunnelling. The Greater Cairo metro tunnel (Line 3) is considered in the present study as case study. The surface displacements obtained by surface displacement equation (SDE) proposed by Peck and Schmidt (1969) are presented and discussed. The main objective of this study is to capture the limitations of the parameters used in the SDE based on the FEA at different sand soil densities. The study focuses on the parameters used in the SDE based on different sand soil densities. The surface displacements obtained by the FEA are compared with those obtained by the SDE. The results discussed in this paper show that the different sand soil densities neglected in the SDE have a significant influence on the surface displacement due to tunnelling.

Passive Microwave Remote Sensing of Snow, Soil Moisture, Surface Temperature and Rain

  • Koike, Toshio;Fujii, Hideyuki
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 1999년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.319-322
    • /
    • 1999
  • Land surface hydrological conditions have been considered to play an important role in the global and regional climate variability. Especially, snow, soil moisture, surface temperature, vegetation and rain are the key parameters which should be observed in the global scale. In this paper, new algorithms for these land surface hydrological parameters have been developed by introducing frequency and polarization dependencies of these parameters in the microwave radiative-transfer equations. The algorithms were applied to the TRMM Microwave Radiometer. (TMI) and validated by using the ground data obtained in the Tibetan Plateau. The estimated snow, soil moisture, surface temperature, water content of vegetation and rain patterns corresponded reasonably to the observed ones.

  • PDF

페룰 무심연삭 가공의 표면거칠기 향상을 위한 최적인자 선정 (Selection of Optimum Conditions for Improving Surface Roughness of Ferrule in Centerless Grinding)

  • 이정현;백승엽;이은상
    • 한국공작기계학회논문집
    • /
    • 제16권2호
    • /
    • pp.63-69
    • /
    • 2007
  • The surface roughness in centerless grinding is mainly affected by the many process parameters. For improving the surface roughness, the control of grinding parameters is very important. This paper deals with the analysis of the process parameters such as height of renters, tilting angle of the regulating wheel with respect to grinding wheel, rotation speed of regulating wheel, which are developed based on design of experiments such as factorial design. The investigation can enhance the surface roughness of ferrule. Finally, we have verified improved results of the optimized conditions.

DLM 공정시 공정변수에 따른 내부공극률과 표면조도 변화 (Effect of Process Parameters on Surface Roughness and Porosity of Direct Laser Melted Bead)

  • 김태현;장정환;전찬후;문영훈
    • 소성∙가공
    • /
    • 제20권8호
    • /
    • pp.575-580
    • /
    • 2011
  • Direct laser melting(DLM) is promising as a joining method for producing parts for automobiles, aerospace, marine and medical applications. An advantageous characteristic of DLM is that it affects the parent metal very little. The mechanical properties of parts made by DLM are strongly affected by the porosity and surface roughness of the laser melted beads. This is a systematic study of the effects of the porosity and surface roughness of laser melted beads using various processing parameters, such as laser power, scan rate and overlapping ratio of the fill spacing. The specimens were fabricated with 316L and 304L austenitic stainless steel powder. Dense parts with low porosity were obtained at low laser scan speed, as it increased the aspect ratio of the parental material and the depth of penetration. The variations of surface roughness were examined at various processing parameters such as overlapping ratio and laser power.

Effect of bath conditions and pulse parameters on tin surface finish for microelectronic packaging applications

  • Sharma, Ashutosh;Jung, Do-hyun;Jung, Jae-pil
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.232-233
    • /
    • 2015
  • The effects of various bath conditions such as surfactant concentration, bath pH, bath temperature, agitation of bath; as well as pulse parameters such as cathodic current density, pulse duty cycle and frequency, on the grain size, surface finish, and appearance of the tin plated coatings have been investigated. The plating bath under investigation is an aqueous acidic solution composed of a mixture of $SnSO_4$, $H_2SO_4$, and a surfactant. The bath conductivity and pH are measured by a glass pH electrode. The microstructure of the coatings produced is characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and surface profilometry. XRD analysis shows that the deposits consist of tetragonal ${\beta}$-Sn crystal structure irrespective of plating conditions. The mechanism involved in the morphology evolution in response to various parameters and conditions has also been discussed.

  • PDF