• 제목/요약/키워드: surface nucleation

검색결과 334건 처리시간 0.023초

레이저 공정을 이용한 전력용 고유전을 PLT 박막 개발 (Development of high dielectric PLT thin films by laser processing for high power applications)

  • 이상렬
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.378-381
    • /
    • 1998
  • PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) dielectric thin films have been deposited on Pt/Ti/$SiO_2$/Si substrates in situ by a laser ablation. We have systematically changed the laser fluence from $0.5\;J/cm^2$ to $3\;J/cm^2$, and deposition temperature from $450^{\circ}C$ to $700^{\circ}C$. The surface morphology was changed from planar grain structure to columnar structure as the nucleation energy was increased. The PLT thin film with columnar structure showed good dielectric properties. It is shown that the deposition temperature strongly affect the film nucleation compared with the laser fluence.

  • PDF

Epitaxial Growth of $Y_2O_3$ films by Ion Beam Assisted Deposition

  • Whang, C.N.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2000년도 제18회 학술발표회 논문개요집
    • /
    • pp.26-26
    • /
    • 2000
  • High quality epitaxial Y2O3 thin films were prepared on Si(111) and (001) substaretes by using ion beam assisted deposition. As a substrate, clean and chemically oxidized Si wafers were used and the effects of surface state on the film crystallinity were investigated. The crystalline quality of the films were estimated by x-ray scattering, rutherford backscattering spectroscopy/channeling, and high-resolution transmission electron microscopy (HRTEM). The interaction between Y and Si atoms interfere the nucleation of Y2O3 at the initial growth stage, it could be suppressed by the interface SiO2 layer. Therefore, SiO2 layer of the 4-6 layers, which have been known for hindering the crystal growth, could rather enhance the nucleation of the Y2O3 , and the high quality epitaxial film could be grown successfully. Electrical properties of Y2O3 films on Si(001) were measured by C-V and I-V, which revealed that the oxide trap charge density of the film was 1.8$\times$10-8C/$\textrm{cm}^2$ and the breakdown field strength was about 10MV/cm.

  • PDF

Copper Electroplating on Mg Alloy in Pyrophosphate Solution

  • Van Phuong, Nguyen;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.124.1-124.1
    • /
    • 2016
  • In this work, uniform thickness and good adhesion of electrodeposited copper layer were achieved on AZ91 Mg alloy in alkaline noncyanide copper solution containing pyrophosphate ion by employing appropriate zincate pretreatment. Without zincate pretreatment, the electrodeposited copper layer on AZ91 Mg alloy was porous and showed poor adhesion which was explained by small number of nucleation sites of copper due to rapid dissolution of the magnesium substrate in the pyrophosphate solution. The zincate pretreatment was found as one of the most important steps that can form a conducting layer to cover AZ91 surface which decreased the dissolution rate of AZ91 Mg alloy about 40 times in the copper pyrophosphate solution. Electrodeposited copper layer on AZ91 Mg alloy after an appropriate zincate pretreatment showed good adhesion and uniform thickness with bright surface appearance, independent of the deposition time but the surface roughness of the electrodeposited copper layer increased with increasing Cu deposition time.

  • PDF

나노결정질 다이아몬드 seeding 효율 향상을 위한 silicon 표면 texturing (Silicon surface texturing for enhanced nanocrystalline diamond seeding efficiency)

  • 박종천;정옥근;김상윤;박세진;윤영훈;조현
    • 한국결정성장학회지
    • /
    • 제23권2호
    • /
    • pp.86-92
    • /
    • 2013
  • 나노결정질 다이아몬드 박막 증착을 위한 전처리 공정으로 $SF_6/O_2$ 유도결합 플라즈마를 이용하여 Si 기판 표면을 texturing하였다. $SF_6/O_2$ 플라즈마 texturing은 2~16 범위의 매우 넓은 정규화된 표면 조도 선택성을 제공할 수 있음을 확인하였다. Texturing된 Si 기판 표면의 나노 다이아몬드 입자 seeding 이후 기존 기계적 연마 전처리에 비해 현저히 향상된 ${\sim}6.5{\times}10^{10}cm^{-2}$의 높은 핵형성 밀도를 확보하였다.

폴리 실리콘 위에서 나노결정질 다이아몬드 박막 성장 (Growth of Nanocrystalline Diamond Films on Poly Silicon)

  • 김선태;강찬형
    • 한국표면공학회지
    • /
    • 제50권5호
    • /
    • pp.352-359
    • /
    • 2017
  • The growth of nanocrystalline diamond films on a p-type poly silicon substrate was studied using microwave plasma chemical vapor deposition method. A 6 mm thick poly silicon plate was mirror polished and scratched in an ultrasonic bath containing slurries made of 30 cc ethanol and 1 gram of diamond powders having different sizes between 5 and 200 nm. Upon diamond deposition, the specimen scratched in a slurry with the smallest size of diamond powder exhibited the highest diamond particle density and, in turn, fastest diamond film growth rate. Diamond deposition was carried out applying different DC bias voltages (0, -50, -100, -150, -200 V) to the substrate. In the early stage of diamond deposition up to 2 h, the effect of voltage bias was not prominent probably because the diamond nucleation was retarded by ion bombardment onto the substrate. After 4 h of deposition, the film growth rate increased with the modest bias of -100 V and -150 V. With a bigger bias condition(-200 V), the growth rate decreased possibly due to the excessive ion bombardment on the substrate. The film grown under -150V bias exhibited the lowest contact angle and the highest surface roughness, which implied the most hydrophilic surface among the prepared samples. The film growth rate increased with the apparent activation energy of 21.04 kJ/mol as the deposition temperature increased in the range of $300{\sim}600^{\circ}C$.

Molecular Dynamics Study on Atomistic Details of the Melting of Solid Argon

  • Han, Joo-Hwan
    • 한국세라믹학회지
    • /
    • 제44권8호
    • /
    • pp.412-418
    • /
    • 2007
  • The atomic scale details of the melting of solid argon were monitored with the aid of molecular dynamics simulations. The potential energy distribution is substantially disturbed by an increase in the interatomic distance and the random of set distance from the lattice points, with increasing temperature. The potential energy barriers between the lattice points decrease in magnitude with the temperature. Eventually, at the melting point, these barriers can be overcome by atoms that are excited with the entropy gain acquired when the atoms obtain rotational freedom in their atomic motion, and the rotational freedom leads to the collapse of the crystal structure. Furthermore, it was found that the surface of crystals plays an important role in the melting process: the surface eliminates the barrier for the nucleation of the liquid phase and facilitates the melting process. Moreover, the atomic structure of the surface varies with increasing temperature, first via surface roughening and then, before the bulk melts, via surface melting.

스테인스강의 표면특성에 미치는 플라즈마질화의 영향 (Effects of Plasma Nitriding on the Surface Charcteristice Of Stainless Steels)

  • 최한철;김관휴
    • 한국표면공학회지
    • /
    • 제30권2호
    • /
    • pp.144-154
    • /
    • 1997
  • Effects of plasma nitriding on the surface charcteristice of stainless steel(SS) were investjgated by utilizing wear tester, micro-hardness tester and potentiostat. The surface and corrosion morphology of plasma nitrided SS were analyzed by utilizing optical microscopy, SEM, XRD and WDX. It was found that plasma nitriding at $550^{\circ}C$, compared with $380^{\circ}C$, prodiced a good wear resistance and hardness as nitriding time increased, whereas Mo addition showd that were resistance and hardness decreased. Intergranular corrosion(IGC) resistance improved significantly in the case of plasma nirtrided SS containing 4.05wt% Mo at $380^{\circ}C$ because that nitrogen and Mo ast syner gidically to form a protective layer on surface which is responsible for the aggresive SCN-ion. Plasma nitrided at $550^{\circ}C$ decreased IGC as Mo content increased. Pitting improved in the plasma nitirided SS at Mo content incresased owing to retard a nucleation and growth of chromium carbide or nitirde in grain boundary.

  • PDF

구리 흡착에 의한 비정질 실리콘 박막의 저온 결정화 거동 (Low-Temperature Crystallization of Amorphous Si Films by Cu Adsorption)

  • 조성우;손동균;이재신;안병태
    • 한국재료학회지
    • /
    • 제7권3호
    • /
    • pp.188-195
    • /
    • 1997
  • 비정질 실리콘 박막 위에 구리용액을 스콘코팅하여 구리이온을 흡착시킨 후 이를 표면 핵생성 site로 이용하는 새로운 저온 결정화 방법에 관하여 연구하였다. 구리 흡착으로 LPCVD비정질 실리콘 박막의 결정화온도를 $500^{\circ}C$까지 낮출 수 있었고 결정화시간도 크게 단축되었다. $530-600^{\circ}C$에서 어닐링시 구리가 흡착된 비정질 실리콘 막은 나뭇가지 형태의 fractal을 이루며 결정화되었다. 이때 fractal크기는 구리용액의 농도에 따라 $30-300{\mu}m$로 성장하였다. Fractal의 내부는 새 털 모양의 타원형 결정립으로 구성되어 있으며 TEM 에 의한 최종 결정립의 크기는 $0.3-0.4{\mu}m$로 intrinsic 비정질 실리콘 박막을 $600^{\circ}C$에서 어닐링하였을 때화 크기가 비슷하였다. 구리용액의 농도 증가에 따라 핵생성 활성화 에너지와 결정성장 활성화 에너지가 감소하였다. 결과적으로 구리 흡착이 표면에서 우선 핵생성 site를 증가시키고 핵생성 및 fractal 성장에 필요한 활성화 에너지를 모두 낮추어 저온에서도 결정화가 촉진되었음을 알 수 있었다.

  • PDF

Highly Doped Nano-crystal Embedded Polymorphous Silicon Thin Film Deposited by Using Neutral Beam Assisted CVD at Room Temperature

  • 장진녕;이동혁;소현욱;홍문표
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.154-155
    • /
    • 2012
  • The promise of nano-crystalites (nc) as a technological material, for applications including display backplane, and solar cells, may ultimately depend on tailoring their behavior through doping and crystallinity. Impurities can strongly modify electronic and optical properties of bulk and nc semiconductors. Highly doped dopant also effect structural properties (both grain size, crystal fraction) of nc-Si thin film. As discussed in several literatures, P atoms or radicals have the tendency to reside on the surface of nc. The P-radical segregation on the nano-grain surfaces that called self-purification may reduce the possibility of new nucleation because of the five-coordination of P. In addition, the P doping levels of ${\sim}2{\times}10^{21}\;at/cm^3$ is the solubility limitation of P in Si; the solubility of nc thin film should be smaller. Therefore, the non-activated P tends to segregate on the grain boundaries and the surface of nc. These mechanisms could prevent new nucleation on the existing grain surface. Therefore, most researches shown that highly doped nc-thin film by using conventional PECVD deposition system tended to have low crystallinity, where the formation energy of nucleation should be higher than the nc surface in the intrinsic materials. If the deposition technology that can make highly doped and simultaneously highly crystallized nc at low temperature, it can lead processes of next generation flexible devices. Recently, we are developing a novel CVD technology with a neutral particle beam (NPB) source, named as neutral beam assisted CVD (NBaCVD), which controls the energy of incident neutral particles in the range of 1~300eV in order to enhance the atomic activation and crystalline of thin films at low temperatures. During the formation of the nc-/pm-Si thin films by the NBaCVD with various process conditions, NPB energy directly controlled by the reflector bias and effectively increased crystal fraction (~80%) by uniformly distributed nc grains with 3~10 nm size. In the case of phosphorous doped Si thin films, the doping efficiency also increased as increasing the reflector bias (i.e. increasing NPB energy). At 330V of reflector bias, activation energy of the doped nc-Si thin film reduced as low as 0.001 eV. This means dopants are fully occupied as substitutional site, even though the Si thin film has nano-sized grain structure. And activated dopant concentration is recorded as high as up to 1020 #/$cm^3$ at very low process temperature (< $80^{\circ}C$) process without any post annealing. Theoretical solubility for the higher dopant concentration in Si thin film for order of 1020 #/$cm^3$ can be done only high temperature process or post annealing over $650^{\circ}C$. In general, as decreasing the grain size, the dopant binding energy increases as ratio of 1 of diameter of grain and the dopant hardly be activated. The highly doped nc-Si thin film by low-temperature NBaCVD process had smaller average grain size under 10 nm (measured by GIWAXS, GISAXS and TEM analysis), but achieved very higher activation of phosphorous dopant; NB energy sufficiently transports its energy to doping and crystallization even though without supplying additional thermal energy. TEM image shows that incubation layer does not formed between nc-Si film and SiO2 under later and highly crystallized nc-Si film is constructed with uniformly distributed nano-grains in polymorphous tissues. The nucleation should be start at the first layer on the SiO2 later, but it hardly growth to be cone-shaped micro-size grains. The nc-grain evenly embedded pm-Si thin film can be formatted by competition of the nucleation and the crystal growing, which depend on the NPB energies. In the evaluation of the light soaking degradation of photoconductivity, while conventional intrinsic and n-type doped a-Si thin films appeared typical degradation of photoconductivity, all of the nc-Si thin films processed by the NBaCVD show only a few % of degradation of it. From FTIR and RAMAN spectra, the energetic hydrogen NB atoms passivate nano-grain boundaries during the NBaCVD process because of the high diffusivity and chemical potential of hydrogen atoms.

  • PDF

Synthesis of Nanoparticles via Surface Modification for Electronic Applications

  • Lee, Burtrand I.;Lu, Song-Wei
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 2000년도 Proceedings of 2000 International Nano Crystals/Ceramics Forum and International Symposium on Intermaterials
    • /
    • pp.35-58
    • /
    • 2000
  • The demand for sub-micrometer or nanometer functional ceramic powders with a better suspension behavior in aqueous media in increasing. Redispersible barium titanate (BT) nanocrystals, green light emitting Mn2+ doped Zn$_2$SiO$_4$ and ZnS nanoparticle phosphors were synthesized by a hydrothermal method or chemical precipitation with surface modification. The nanoparticle redispersibility for BT was achieved by using a polymeric surfactant. X-ray diffraction(XRD) results indicated that the BT particles are of cubic phase with 80 nm in size. XRD results of zinc silicate phosphor indicate that seeds play an important role in enhancing the nucleation and crystallization of Zn$_2$SiO$_4$ crystals in a hydrothermal condition. This paper describes and discuss the methods of surface modification, and the resulting related properties for BT, zinc silicate and zinc sulfide.

  • PDF