• Title/Summary/Keyword: surface microbes

Search Result 89, Processing Time 0.024 seconds

Effects of Pre-treatment Method on the Surface Microbes of Radish (Raphanus sativus L.) leaves (전처리 방법이 무청의 표면 미생물 변화에 미치는 영향)

  • Ku, Kyung-Hyung;Lee, Kyung-A;Kim, Young-Lim;Lee, Myung-Gi
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.5
    • /
    • pp.649-654
    • /
    • 2006
  • It was investigated the effects of pre-treatment method on the microbes on the surface of radish (Raphanus sativus L.) leaves. Independent variables put in water washing ($X_1$), microwave treatment ($X_2$) and steam treatment ($X_3$) using central composite design and response surface analysis. It was not detected in the pathogenic microbes, Samonella spp., Camphylobacter spp., Vibrio spp., Shigella spp., Staphyloccocus spp., on the surface of collected radish leaves without pre-treatment. But general microbes showed $3.90{\times}10^5{\sim}1.20{\times}10^7CFU/g$ of total microbes, $1.10{\times}10^2{\sim}2.00{\times}10^5CFU/g$ of E. coli, $2.40{\times}10^3{\sim}3.55{\times}10^6CFU/g$ of yeast/mold on the surface of various radish leaves and lactic acid bacteria was detected or not according to collected samples. The best method of pre-treatment was steam treatment on the microbe reduction effect of samples surface. Also, the multiplex regression coefficients analysis was calculated three independent variables ($X_1,\;X_2,\;X_3$) and dependent variables (total microbes, lactic acid bacteria and yeast/molds). It showed high correlation $R^2$, 0.89, 0.87, 0.85, respectively. For effective reduction of surface microbes, the best method was water washing with microwave or steam treatment at the same time.

Comparison of Fecal Microbes' Survival in Soil between Compost Surface Application and Soil Incorporation (지표와 지중 퇴비 시비에 따른 토양에서의 분변성 미생물 생존성 비교)

  • Jun, Sang Min;Song, Inhong;Kim, Kyeung;Hwang, Soon Ho;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • The objective of this study was to compare fecal microbes survival in soil between compost surface application and soil incorporation. The survival experiment was conducted in six styrofoam beds ($510{\times}325{\times}305(mm)$ in size) filled with sandy loam soil. A half of six boxes were received by compost surface application, while the other half were treated with compost-soil mixture. Duplicated surface and surbsurface soil (20 cm depth) samples were collected at various interval up to 50 days and analyzed for the determination of fecal coliforms and E. coli numbers. As expected, surface applied beds demonstrated two to three magnitudes order greater in both the study microorganisms as compared to soil incorporated beds. Microbial inactivation rate of soil surface was twice as great as subsurface soil condition probably due to exposure to sun light and environmental conditions including moisture loss. When rainfall occurred, microbes on the surface were transported into soil along with water movement. It was concluded that surface compost application may be easier to apply but pose higher risk of human exposure to microbes. Winter compost application may be favorable in alleviating health risk by giving some time for inactivation compared to spring application.

Photocatalytic Degradation of E. coli and S. aureus by Multi Walled Carbon Nanotubes

  • Sharon, Madhuri;Datta, Suprama;Shah, Sejal;Sharon, Mahesh War;Soga, T.;Afre, Rakesh
    • Carbon letters
    • /
    • v.8 no.3
    • /
    • pp.184-190
    • /
    • 2007
  • Carbon Nano Tubes could be either metallic or semi-conducting in nature, depending on their diameter. Its photocatalytic behavior has given an impetus to use it as an anti-microbial agent. More than 95% Escherichia coli and Staphylococcus aureus bacteria got killed when exposed to Carbon Nano Tubes for 30 minutes in presence of sunlight. Carbon Nano Tubes are supposed to have smooth surface on to which it accumulates positive charges when exposed to light. The surface that is non illuminated has negative charge. At the cellular level microorganisms produce negative charges on the cell membrane, Therefore damaging effect of multi walled carbon nano tubes (exposed to light) on the microorganisms is possible. In this paper, photo catalytic killing of microbes by multi walled carbon nano tubes is reported. Killing was due to damage in the cell membrane, as seen in SEM micrographs. Moreover biochemical analysis of membrane as well as total cellular proteins by SDS PAGE showed that there was denaturation of membrane proteins as well as total proteins of both the microbes studied. The killed microbes that showed a decrease in number of protein bands (i.e. due to breaking down of proteins) also showed an increase in level of free amino acids in microbes. This further confirmed that proteins got denatured or broken down into shorter units of amino acids. Increased level of free amino acids was recorded in both the microbes treated with multi walled carbon nano tubes and sunlight.

Studies on the Improvement of Utility Value of Corn Grains by Different Processing Methods II. Effects of Different Corn Processing Methods on Attachment Characteristics of Rumen Microbes in Hanwoo (옥수수 알곡의 가공처리에 의한 영양소 이용성 향상에 관한 연구 II. 한우에 있어서 옥수수 알곡의 가공처리가 반추위 미생물의 부착양상에 미치는 영향)

  • Kim, W.Y.;Kim, H.W.;Kang, C.M.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.3 no.1
    • /
    • pp.132-141
    • /
    • 2001
  • This study was conducted to determine effects of whole and processed corns on attachment characteristics of rumen microbes in Hanwoo. Whole corn(WC) was processed into four different types; ground corn(GC), cracked corn(CC), flaked corn(FC), and soaked corn(SC). After each processed corns was incubated in the rumen of Hanwoo for 12 h and 24 h, attachment characteristics of rumen microbes and morphological changes of feed substrates was examined by utilizing scanning electron microscopy(SEM). In this study, the treatment group of GC and CC showed the highest in the attachment of rumen microbes. On the other hand, microbial attachments to the starch particle of WC and SC were hardly detected. However, with the increase of incubation time the surface of WC and SC was covered by many microbes, resulting in enhancing the surface degradation.

Identification of Optimal Operation Factors for Landfarming using Response Surface Methodology (반응표면분석법을 활용한 토양경작법에서 TPH 저감에 영향을 미치는 인자의 최적조건 도출)

  • Kwon, Ipsae;Lee, Hanuk;Kim, Jin-Hwan;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.94-103
    • /
    • 2016
  • Landfarming that supplies aerobic biodegradation condition to indigenous microbes in soils is a biological remediation technology. In this research, volatilization and biodegradation rate by indigenous microbes in the soil contaminated with total petroleum hydrocarbons (TPH) were measured. Soils were contaminated with diesel artificially and divided into two parts. One was sterilized by autoclave to remove indigenous microorganism and the other was used as it was. Various moisture contents and number of tillings were applied to the soil to find out proper condition to minimize volatilization and enhance bioremediation. Volatilization of TPH was inhibited and biodegradation was enhanced by increase on moisture content. Tilling was usually used to supply air for microbes, but tillings did not affect the growth of microbes in our study. Enough moisture content and proper aeration are important to control volatilization in landfarming. Also, TPH degradation was a function of the microbe counts (x1), numbers of tilling (x2), and moisture content (x3) from the application of the response surface methodology. Statistical results showed the order of significance of the independent variables to be microbe counts > numbers of tilling > moisture content.

Microbial Removal Using Layered Double Hydroxides and Iron (Hydr)oxides Immobilized on Granular Media

  • Park, Jeong-Ann;Lee, Chang-Gu;Park, Seong-Jik;Kim, Jae-Hyeon;Kim, Song-Bae
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.149-156
    • /
    • 2010
  • The objective of this study was to investigate microbial removal using layered double hydroxides (LDHs) and iron (hydr)oxides (IHs) immobilized onto granular media. Column experiments were performed using calcium alginate beads (CA beads), LDHs entrapped in CA beads (LDH beads), quartz sand (QS), iron hydroxide-coated sand (IHCS) and hematite-coated sand (HCS). Microbial breakthrough curves were obtained by monitoring the effluent, with the percentage of microbial removal and collector efficiency then quantified from these curves. The results showed that the LDH beads were ineffective for the removal of the negatively-charged microbes (27.7% at 1 mM solution), even though the positively-charged LDHs were contained on the beads. The above could be related to the immobilization method, where LDH powders were immobilized inside CA beads with nano-sized pores (about 10 nm); therefore, micro-sized microbes (E. coli = 1.21 ${\mu}m$) could not diffuse through the pores to come into contact with the LDHs in the beads, but adhere only to the exterior surface of the beads via polymeric interaction. IHCS was the most effective in the microbial removal (86.0% at 1 mM solution), which could be attributed to the iron hydroxide coated onto the exterior surface of QS had a positive surface charge and, therefore, effectively attracted the negatively-charged microbes via electrostatic interactions. Meanwhile, HCS was far less effective (35.6% at 1 mM solution) than IHCS because the hematite coated onto the external surface of QS is a crystallized iron oxide with a negative surface charge. This study has helped to improve our knowledge on the potential application of functional granular media for microbial removal.

Isolation and Identification of Microbes from AquaMats® for the Treatment of Leachate Originated with the Samsan Dong Landfill in Ulsan Metropolitan City (울산광역시 삼산동 매립장 침출수 처리를 위한 AquaMats®상에서 미생물의 분리 및 동정)

  • Lee, June-Woo;Kim, Jwa-Kwan
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1185-1191
    • /
    • 2006
  • The high surface area polymer, AquaMats$^{circledR}$ was used for the leachate purification process originated from the Samsan Dong Landfill in Ulsan Metropolitan City. And then, three species of dominant microbes were isolated and identified from AquaMats$^{circledR}$. Gram staining revealed these microbes to be Gram-negative rod strains: They were identified as Agrobacterium radiobacter, Pseudomonas cepacia, Flavobacterium indologenes. All they showed no growth on media in which the leachate was added alone, but a rapid proliferation rate on media with yeast extract as nutrient requirements.

Visualization of Extracellular Vesicles of Prokaryotes and Eukaryotic Microbes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • v.48 no.4
    • /
    • pp.96-101
    • /
    • 2018
  • The release of nanoscale membrane-bound vesicles is common in all three domains of life. These vesicles are involved in a variety of biological processes such as cell-to-cell communication, horizontal gene transfer, and substrate transport. Prokaryotes including bacteria and archaea release membrane vesicles (MVs) (20 to 400 nm in diameter) into their extracellular milieu. In spite of structural differences in cell envelope, both Gram-positive and negative bacteria produce MVs that contain the cell membrane of each bacterial species. Archaeal MVs characteristically show surface-layer encircling the vesicles. Filamentous fungi and yeasts as eukaryotic microbes produce bilayered exosomes that have varying electron density. Microbes also form intracellular vesicles and minicells that are similar to MVs and exosomes in shape. Electron and fluorescence microscopy could reveal the presence of DNA in MVs and exosomes. Given the biogenesis of extracellular vesicles from the donor cell, in situ high-resolution microscopy can provide insights on the structural mechanisms underlying the formation and release of microbial extracellular vesicles.

Survey on Microbiral Incidence of Meats in Slaughtered Cattles and Pigs (소ㆍ돼지 도축지육 표면의 세균분포조사)

  • 최해연;정운선
    • Korean Journal of Veterinary Service
    • /
    • v.17 no.1
    • /
    • pp.61-66
    • /
    • 1994
  • Microbiological culture was conducted in the meat surface of cattles and pigs that was slaughtered in the Chung -Ju area and the result are as follows : 1. The number of bacteria in antemortem meat surface was higher ten times in March and ten to one thousand times in June to August compared with postmortem meat surface. 2. Microbes isolated in the meat surface, at the time of slaughter, was Stahylococcus spp., E. coli, Fungus and Streptococcus spp. 3. Bacteria was isolated in every parts of meat surface regardless to their location and many Fungus was isolated during summer.

  • PDF

An Experimental Study on Bacterial Adhesion onto Activated Carbon and Ceramic (활성탄 및 세라믹 재질에의 세균 부착성에 대한 연구)

  • Kwon Sung-Hyun;Cho Dae-Chul;Rhee In-Hyoung
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1163-1170
    • /
    • 2005
  • The microbial adsorption characteristics of two different media for biological treatment were studied using attached diverse microbes onto activated carbon and ceramic. The results in the experiments of the characteristics of physical adhesion on two different media with addition of high and low concentrated substrate in the culture were observed that the efficient of adhesion onto F-400 activated carbon was higher over that of ceramic due to the surface area of media. The irradiation treatment by ultrasonication with 400 W power and 3 min retention time on the media without addition substrate conditions and subsequent mixing throughly the culture showed the highest efficiency of cell detachment on the media. Three different microbes, P. ovalis, A calcoaceticus, and B. subtillis were used for the study of the characteristics of microbial adhesion on the media. p ovalis showed the highest adhesion capability while B. subtillis showed the lowest capability adhesion onto media either addition of substrate in the culture. The mixed bacterial culture showed $10\%$ lower removal efficiency of DOC in the low concentrated substrate culture compared to the single pure culture. Whileas, it did not show significant difference between two cultures at high concentrated substrate. It was also observed same population density of microorganism by counting of microbes adhered to microbial media with an ultrasound treatment.