• Title/Summary/Keyword: surface methodology

Search Result 1,972, Processing Time 0.029 seconds

The Effect of Uncertainty in Roughness and Discharge on Flood Inundation Mapping (조도계수와 유량의 불확실성이 홍수범람도 구축에 미치는 영향)

  • Jung, Younghun;Yeo, Kyu Dong;Kim, Soo Young;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.937-945
    • /
    • 2013
  • The accuracy of flood inundation maps is determined by the uncertainty propagated from all variables involved in the overall process including input data, model parameters and modeling approaches. This study investigated the uncertainty arising from key variables (flow condition and Manning's n) among model variables in flood inundation mapping for the Missouri River near Boonville, Missouri, USA. Methodology of this study involves the generalized likelihood uncertainty estimation (GLUE) to quantify the uncertainty bounds of flood inundation area. Uncertainty bounds in the GLUE procedure are evaluated by selecting two likelihood functions, which is two statistic (inverse of sum of squared error (1/SAE) and inverse of sum of absolute error (1/SSE)) based on an observed water surface elevation and simulated water surface elevations. The results from GLUE show that likelihood measure based on 1/SSE is more sensitive on observation than likelihood measure based on 1/SAE, and that the uncertainty propagated from two variables produces an uncertainty bound of about 2% in the inundation area compared to observed inundation. Based on the results obtained form this study, it is expected that this study will be useful to identify the characteristic of flood.

Quality Characteristics of Black Rice Cookies as Influenced by Content of Black Rice Flour and Baking Time (흑미의 배합비와 굽기시간에 따른 흑미쿠키의 품질특성)

  • Kim, Yang-Sun;Kim, Gyeong-Hwa;Lee, Jun-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.4
    • /
    • pp.499-506
    • /
    • 2006
  • Response surface methodology was used to investigate the cookie manufacturing process with black rice flour. A three- variable, three-level central composite design was employed where the independent variables were the amount of black rice flour ($0{\sim}20%$), baking time ($10{\sim}14 min$), and sugar type (sucrose, aspartame and oligosaccarides). pHs of dough and cookie tended to increase with the addition of black rice flour. Moisture content of dough slightly increased with tile addition of black rice flour but nearly affected by baking time. Spread factor increased with the addition of black rice flour and it was more evident in the samples prepared with sucrose. L*-value decreased but a*-value increased significantly with the addition of black rice flour. Generally the amount of black rice flour in the sample did not affect the textural characteristics of cookie. As the amount of black rice and baking time increased, sensory flavor became stronger. Sensory sweetness as well as hardness increased but sensory color became darker with the addition of black rice flour. In addition, the response surface models developed in this study for most of physicochemical and sensory characteristics of black rice cookie were adequate.

반응표면 분석에 의한 Trichoderma sp. FJ1의 cellulolytic enzymes 생산의 최적화

  • Kim, Gyeong-Cheol;Yu, Seung-Su;O, Yeong-A;Lee, Yong-Un;Jeong, Seon-Yong;Kim, Seong-Jun
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.453-456
    • /
    • 2002
  • The production conditions of cellulolytic enzymes by Trichoderma sp. FJ1, were optimized using response surface analysis. The culture factors which largely affected to the production of enzymes such as cultivation time, carbon source concentration, nitrogen source concentration, and composition ratio of carbon sources were employed. Optimized conditions of the factors above to each cellulolytic enzyme production was as follow: CMCase production was obtained in the conditions of cultivation time of 5.4 days, 3.5% of carbon source concentration, 0.6% of nitrogen source concentration, and 52:48 (avicel:CMC) of composition ratio of carbon sources, respectively, xylanase appeared in the conditions of 5.3 day, 3.5%, 0.8%, and 54:46, respectively, and ${\beta}-glucosidase$ were 7.0 day, 5.0%, 1.0%, and 83:17, respectively, and avicelase were 6.5 day, 4.0%, 0.9%, and 64:36, respectively. The activities of CMCase, xylanase, ${\beta}-glucosidase$, and avicelase predicted by the response surface methodology were 33.5, 52.6, 2.88, and 1.84 U/ml, respectively, and ${\beta}-glucosidase$ was enhanced up to 74% compared to that obtained in the experimental conditions.

  • PDF

Monitoring of Alcohol Fermentation Condition of Brown Rice Using Raw Starch Digesting Enzyme (생전분 분해효소를 이용한 현미 알콜발효조건의 모니터링)

  • 신진숙;이오석;김경은;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.375-380
    • /
    • 2003
  • The study was carried out to set up alcohol fermentation condition for uncooked brown rice. Response surface methodology (RSM) was applied to optimize and monitor of the alcohol fermentation condition with uncooked brown rice. The primary variables were conducted the reaction surface regression analysis for the particle size of brown rice (20 40 60 mesh) the enzyme content (0.1,0.3,0.5%) and the agitating rate (0,100,200 rpm). Their optimization was 35~42 mesh for the size of particle and 0.32~0.43% for enzyme content by SAS (Statistical Analysis System). The coefficient of determination ($R^2$) in ingredients was admitted at the significant level of 5~10% in all ingredients except for a reducing sugar. Predicted values at optimum alcohol fermentation condition agreed with experimental values. During the fermentation, pH was decreased from 6.25 to 4.34, and total acidity was increased from 0.15 to 0.2. The amino acidity was decreased from 1.88 to 0.92, reducing sugar and total sugar contents were decreased 213 mg% and 1,077 mg%, respectively. Alcohol content was increased to 10% after 48 hr fermentation.

Measurements of the Heat Release Rate and Fire Growth Rate of Combustibles for the Performance-Based Design - Focusing on the Combustibles in Residential and Office Spaces (성능위주설계를 위한 가연물의 열발생률 및 화재성장률 측정 -주거 및 사무공간 가연물을 중심으로)

  • Nam, Dong-Gun;Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • The design fire based on the heat release rate (HRR) of combustibles can significantly affect the assessment of fire safety in the performance-based design (PBD). In the present PBD, however, limited information in the foreign literature has been used without further verification due to the lack of fire information in domestic combustibles. The objective of this study is to provide information on the HRR and fire growth rate for various combustibles in residential and office spaces. To end this, the fire experiments were carried out with single and multiple combustibles. The peak HRR of combustibles used in the present study had a range of 36 kW~1,092 kW. The fire growth rates were also $0.003kW/s^2{\sim}0.0287kW/s^2$ and $0.003kW/s^2{\sim}0.0838kW/s^2$ for the residential and office spaces, respectively. In particular, a sofa had the highest fire risk in terms of the peak HRR and fire growth rate. Finally, a methodology for calculating the peak HRR in a space was proposed through correlation analysis between the peak HRR and exposed surface of various combustibles.

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

Optimal Condition for Manufacturing Water Extract from Mandarin Orange Peel for Colored Rice by Coating (유색미 제조용 감귤과피 물추출 균질액의 제조조건 최적화)

  • Seo, Sung-Soo;Youn, Kwang-Sup;Shin, Seung-Ryeul;Kim, Soon-Dong
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.884-892
    • /
    • 2003
  • This study was conducted to optimize the water homogenization process of mandarin orange peel for colored rice. Four variables were used to determine the optimum conditions for homogenization speed, time, temperature, and water volume with a five level central composite design and response surface methodology. The process was optimized using the combination of EI and b values of rice coated with water extract of the mandarin orange peel. The effect of water volume was the most significant compared to the other variables on the quality of water homogenate. The regression polynomial model was a suitable (p>0.05) model by lack-of-fit analysis showing high significance. To optimize the process, based on surface response and contour plots, individual contour plots for the response variables were superimposed. The optimum conditions for manufacturing water extract from mandarin orange was with 8,500 rpm homogenization speed, 2.8 min time, $53^{\circ}C$ temperature, and 42 mL water volume with the maximum of restricted variables of EI above 400 and h value above 24.

Optimization for the Preparation Conditions of Instant Rice Gruel Using Oyster Mushroom and Brown Rice (느타리버섯과 현미를 이용한 즉석죽 제조조건의 최적화)

  • Lee, Gee-Dong;Kim, Hyun-Gu;Kim, Jin-Gu;Kwon, Joong-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.737-744
    • /
    • 1997
  • Four-dimensional response surface methodology was used for optimizing preparation conditions and monitoring sensory quality of instant rice gruel prepared using oyster mushroom and brown rice. Water absorption time of brown rice and glutinous rice to prepare instant rice gruel were 50 hr at $5^{\circ}C\;and\;1\;hr\;at\;20^{\circ}C$, respectively. The optimum conditions predicted for each corresponding sensory properties of instant rice gruel were 47.58% (rate of brown rice in water-absorbed brown and glutinous rice), 569.68 mL (content of solution) and 52.40 min (heating time at $120^{\circ}C$) in viscosity of instant rice gruel, 47.15%, 568.49 mL and 53.04 min in taste of instant rice gruel, 44.06%, 558.54 mL and 53.84 min in mouth-feel of instant rice gruel, and 46.20%, 561.64 mL and 51.60 min in overall acceptance of instant rice gruel, respectively. The optimum conditions, which satisfy all sensory properties of rice gruel, were 44%, 620 mL and 56 min in rate of brown rice in water-absorbed brown and glutinous rice, content of solution and heating time, respectively. Sensory scores predicted at the optimum conditions were in good agreement with experimental sensory scores.

  • PDF

Shelf life of Bottled Sea Squirt Halocynthia roretzi Meat Packed in Vegetable Oil (BSMO)

  • Choi, Nam-Do;Zeng, Jiting;Choi, Byung-Dae;Ryu, Hong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.17 no.1
    • /
    • pp.37-46
    • /
    • 2014
  • Fresh sea squirt meat requires a modified processing and preservation process because it has a short shelf life due to its high moisture content and strong proteolytic enzyme activity. In this study, bottled sea squirt meat prepared in vegetable oil (BSMO) to enhance the consumer acceptability was exposed to ${\gamma}$-ray (Co60, 10 kGy/h) irradiation to extend the shelf life without the use of a heating process. Response surface methodology was used to determine the optimal mixing ratio of BSMO containing 5% dehydrated fresh meat. Texture analysis and nutritional evaluation were also performed on a control and BSMO samples. The volatile basic nitrogen (VBN) content and total cell count were measured to determine the shelf life of irradiated BSMO products during chilled storage at $4^{\circ}C$ for 60 days. According to a panel of 10 trained tasters (aged 20-29 years), the optimal mixing formulation was 80 g meat in 60 mL of mixed vegetable oil (30 mL of olive oil and 30 mL of sesame oil). The highest rated formulation, according to a panel of nine trained tasters (aged ${\geq}30$ years), was 80 g meat in 60 mL of mixed vegetable oil (42 mL of olive oil and 18 mL of sesame oil). Moisture, ash, and protein contents in BSMO did not change significantly (P < 0.05) compared with the control. A higher lipid content ($0.84{\pm}0.23$ to $2.13{\pm}0.61$; P < 0.05) was observed due to the presence of vegetable oil on the surface of BSMO. The vegetable oil raised the hardness, springiness, cohesiveness, gumminess, chewiness, and resilience of BSMO. BSMO products remained edible after 50 days of storage at $4^{\circ}C$ based on the VBN content (BSMO 1: $27.92{\pm}0.96$ mg/100 g, BSMO 2: $24.84{\pm}1.95$ mg/100 g) and total cell count (BSMO 1: $4.60{\pm}0.80$ log CFU/mL, BSMO 2: $3.65{\pm}0.20$ log CFU/mL) when compared with standard levels of VBN (25.00 mg/100 g) and total cell count (5 log CFU/mL), respectively. The results showed that irradiated BSMO products could help to expand the processed seafood market and increase the popularity of seafood among the younger generations.

Optimization of Extraction Conditions for Functional Components of Roasted Pleurotus eryngii by Microwave-Assisted Extraction (볶음 새송이버섯 기능성분의 마이크로웨이브 추출조건 최적화)

  • Lee, Myung-Hee;Yoon, Sung-Ran;Jo, Deok-Jo;Kim, Hyun-Ku;Lee, Gee-Dong
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.36 no.8
    • /
    • pp.1062-1069
    • /
    • 2007
  • Response surface methodology was employed to optimize extraction conditions for finding the maximizing the functional properties of roasted Pleurotus eryngii. Based on the central composite design, independent variables were ethanol concentration ($0{\sim}100%$), extraction time ($1{\sim}9$ min) and microwave power ($25{\sim}125$ W). Soluble solid content, electron donating ability and nitrite-scavenging ability were mainly affected by ethanol concentration, but ACE inhibition activity was largely affected by extraction time. The optimum ranges of extraction conditions resulting from superimposing the response surface were predicted to be ethanol concentration ($25{\sim}50%$), extraction time ($3{\sim}9$ min) and microwave power ($80{\sim}125$ W). Total protein and total phenolic compound content of optimal extracts were 45.80 mg/g and 7.42 mg/g, respectively. In phenolic compounds of roasted Pleurotus eryngii extracts, protocatechuic acid was the highest concentration at 1226.32 ${\mu}g/g$, followed by salicylic acid, catechin, p-hydroxybenzoic acid, caffeic acid, coumaric acid and hesperidin.