• Title/Summary/Keyword: surface methodology

Search Result 1,972, Processing Time 0.027 seconds

Optimization and Packed Bed Column Studies on Esterification of Glycerol to Synthesize Fuel Additives - Acetins

  • Britto, Pradima J;Kulkarni, Rajeswari M;Narula, Archna;Poonacha, Sunaina;Honnatagi, Rakshita;Shivanathan, Sneha;Wahab, Waasif
    • Korean Chemical Engineering Research
    • /
    • v.60 no.1
    • /
    • pp.70-79
    • /
    • 2022
  • Biodiesel production has attracted attention as a sustainable source of fuel and is a competitive alternate to diesel engines. The glycerol that is produced as a by-product is generally discarded as waste and can be converted to green chemicals such as acetins to increase bio-diesel profitability. Acetins find application in fuel, food, pharmaceutical and leather industries. Batch experiments and analysis have been previously conducted for synthesis of acetins using glycerol esterification reaction aided by sulfated metal oxide catalysts (SO42-/CeO2-ZrO2). The aim of this study was to optimize process parameters: effects of mole ratio of reactants (glycerol and acetic acid), catalyst concentration and reaction temperature to maximize glycerol conversion/acetin selectivity. The optimum conditions for this reaction were determined using response surface methodology (RSM) designed as per a five-level-three-factor central composite design (CCD). Statistica software 10 was used to analyze the experimental data obtained. The optimized conditions obtained were molar ratio - 1:12, catalyst concentration - 6 wt.% and temperature -90 ℃. A packed bed reactor was fabricated and column studies were performed using the optimized conditions. The breakthrough curve was analyzed.

Isolation of Dibutyl Phthalate-Degrading Bacteria and Its Coculture with Citrobacter freundii CD-9 to Degrade Fenvalerate

  • Wu, Min;Tang, Jie;Zhou, Xuerui;Lei, Dan;Zeng, Chaoyi;Ye, Hong;Cai, Ting;Zhang, Qing
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.2
    • /
    • pp.176-186
    • /
    • 2022
  • Continued fenvalerate use has caused serious environmental pollution and requires large-scale remediation. Dibutyl phthalate (DBP) was discovered in fenvalerate metabolites degraded by Citrobacter freundii CD-9. Coculturing is an effective method for bioremediation, but few studies have analyzed the degradation pathways and potential mechanisms of cocultures. Here, a DBP-degrading strain (BDBP 071) was isolated from soil contaminated with pyrethroid pesticides (PPs) and identified as Stenotrophomonas acidaminiphila. The optimum conditions for DBP degradation were determined by response surface methodology (RSM) analysis to be 30.9 mg/l DBP concentration, pH 7.5, at a culture temperature of 37.2℃. Under the optimized conditions, approximately 88% of DBP was degraded within 48 h and five metabolites were detected. Coculturing C. freundii CD-9 and S. acidaminiphila BDBP 071 promoted fenvalerate degradation. When CD-9 was cultured for 16 h before adding BDBP 071, the strain inoculation ratio was 5:5 (v/v), fenvalerate concentration was 75.0 mg/l, fenvalerate was degraded to 84.37 ± 1.25%, and DBP level was reduced by 5.21 mg/l. In addition, 12 fenvalerate metabolites were identified and a pathway for fenvalerate degradation by the cocultured strains was proposed. These results provide theoretical data for further exploration of the mechanisms used by this coculture system to degrade fenvalerate and DBP, and also offer a promising method for effective bioremediation of PPs and their related metabolites in polluted environments.

Optimization of the extraction process of high levels of chlorogenic acid and ginsenosides from short-term hydroponic-cultured ginseng and evaluation of the extract for the prevention of atopic dermatitis

  • Lee, Tae Kyung;Lee, Ji Yun;Cho, Yeon-Jin;Kim, Jong-Eun;Kim, Seo Yeong;Park, Jung Han Yoon;Yang, Hee;Lee, Ki Won
    • Journal of Ginseng Research
    • /
    • v.46 no.3
    • /
    • pp.367-375
    • /
    • 2022
  • Background: Short-term hydroponic-cultured ginseng (sHCG), which is 1-year-old ginseng seedlings cultivated for 4 weeks in a hydroponic system, is a functional food item with several biological effects. However, the optimal extraction conditions for sHCG, and the bioactivity of its extracts, have not been evaluated. Methods: Chlorogenic acid (CGA) and ginsenoside contents were evaluated in sHCG, white ginseng (WG), and red ginseng (RG) using high-performance liquid chromatography. Response surface methodology (RSM) was used to optimize the extraction conditions (temperature and ethanol concentration) to maximize the yield of dry matter, CGA, and four ginsenosides (Re, Rg1, Rb1, and Rd) from sHCG. The optimal extraction conditions were applied to pilot-scale production of sHCG extracts. The expression levels of tumor necrosis factor (TNF)-α/interferon (IFN)-γ-induced thymic and activation-regulated chemokines (TARC/CCL17) were measured after treatment with sHCG, WG, and RG extracts, and the effects of their bioactive compounds (CGA and four ginsenosides) on human skin keratinocytes (HaCaTs) were evaluated. Results: CGA and four ginsenosides, which are bioactive compounds of sHCG, significantly inhibited TNF-α/IFN-γ-induced TARC/CCL17 expression. The optimal sHCG extraction conditions predicted by the RSM models were 80 ℃ and 60% ethanol (v/v). The sHCG extracts produced at the pilot scale under optimal conditions greatly alleviated TNF-α/IFN-γ-induced TARC/CCL17 production compared with WG and RG extracts. Conclusions: Pesticide-free sHCG extracts, which contain high levels of CGA and the ginsenosides Re, Rg1, Rb1, and Rd as bioactive compounds, may have therapeutic potential for atopic diseases.

Processing Optimization and Sensory Characteristics of Canned Smoked Oysters Crassostrea gigas in Oriental Sauce (오리엔탈소스 훈제굴(Crassostrea gigas) 통조림의 제조공정 최적화 및 관능특성)

  • Lee, Ji Un;Yoon, In Seong;Kwon, In Sang;Kim, Jin-Soo;Lee, Jung-Suck;Heu, Min Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.55 no.3
    • /
    • pp.284-293
    • /
    • 2022
  • In this study, we aimed to optimize the blending conditions of sunflower oil (A), water (B), and oriental sauce (C) for canned smoked oysters Crassostrea gigas in oriental sauce (SOO). Using response surface methodology (RSM), we found that the optimal independent variables [X1, A/(B+C); X2, B/C] based on the salinity (Y1) amino acid nitrogen content (Y2), and overall acceptance (Y3) of high-quality SOO were 48.7% (w/w) for sunflower oil, 25.5% (w/w) for water, and 25.8% (w/w) for oriental sauce. Under optimal conditions, the experimental values of Y1, Y2, and Y3 were 1.68±0.4 g/100 g, 155.4±2.4 mg/100 g, 6.2±0.23 score, respectively, which were not significantly different from the predicted values (P<0.05). The SOO prepared under optimal conditions had a higher overall acceptance than commercial canned smoked oysters. These results suggest that developing canned smoked oysters in oriental sauce can be industrialized, and the product is predicted to be competitive in the global market.

Enhanced Production of C30 Carotenoid 4,4'-Diaponeurosporene by Optimizing Culture Conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T

  • Siziya, Inonge Noni;Yoon, Deok Jun;Kim, Mibang;Seo, Myung-Ji
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.892-901
    • /
    • 2022
  • The rising demand for carotenoids can be met by microbial biosynthesis as a promising alternative to chemical synthesis and plant extraction. Several species of lactic acid bacteria (LAB) specifically produce C30 carotenoids and offer the added probiotic benefit of improved gut health and protection against chronic conditions. In this study, the recently characterized Lactiplantibacillus plantarum subsp. plantarum KCCP11226T produced the rare C30 carotenoid, 4,4'-diaponeurosporene, and its yield was optimized for industrial production. The one-factor-at-a-time (OFAT) method was used to screen carbon and nitrogen sources, while the abiotic stresses of temperature, pH, and salinity, were evaluated for their effects on 4,4'-diaponeurosporene production. Lactose and beef extract were ideal for optimal carotenoid production at 25℃ incubation in pH 7.0 medium with no salt. The main factors influencing 4,4'-diaponeurosporene yields, namely lactose level, beef extract concentration and initial pH, were enhanced using the Box-Behnken design under response surface methodology (RSM). Compared to commercial MRS medium, there was a 3.3-fold increase in carotenoid production in the optimized conditions of 15% lactose, 8.3% beef extract and initial pH of 6.9, producing a 4,4'-diaponeurosporene concentration of 0.033 A470/ml. To substantiate upscaling for industrial application, the optimal aeration rate in a 5 L fermentor was 0.3 vvm. This resulted in a further 3.8-fold increase in 4,4'-diaponeurosporene production, with a concentration of 0.042 A470/ml, compared to the flask-scale cultivation in commercial MRS medium. The present work confirms the optimization and scale-up feasibility of enhanced 4,4'-diaponeurosporene production by L. plantarum subsp. plantarum KCCP11226T.

Increased Production of Ginsenoside Compound K by Optimizing the Feeding of American Ginseng Extract during Fermentation by Aspergillus tubingensis

  • Song, Woo-Seok;Kim, Min-Ju;Shin, Kyung-Chul;Oh, Deok-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.7
    • /
    • pp.902-910
    • /
    • 2022
  • The ginsenoside compound K (C-K) is widely used in traditional medicines, nutritional supplements, and cosmetics owing to its diverse pharmacological activities. Although many studies on C-K production have been conducted, fermentation is reported to produce C-K with low concentration and productivity. In the present study, addition of an inducer and optimization of the carbon and nitrogen sources in the medium were performed using response surface methodology to increase the C-K production via fermentation by Aspergillus tubingensis, a generally recognized as safe fungus. The optimized inducer and carbon and nitrogen sources were 2 g/l rice straw, 10 g/l sucrose, and 10 g/l soy protein concentrate, respectively, and they resulted in a 3.1-fold increase in the concentration and productivity of C-K (0.22 g/l and 1.52 mg/l/h, respectively) compared to those used before optimization without inducer (0.071 g/l and 0.49 mg/l/h, respectively). The feeding methods of American ginseng extract (AGE), including feeding timing, feeding concentration, and feeding frequency, were also optimized. Under the optimized conditions, A. tubingensis produced 3.96 mM (2.47 g/l) C-K at 144 h by feeding two times with 8 g/l AGE at 48 and 60 h, with a productivity of 17.1 mg/l/h. The concentration and productivity of C-K after optimization of feeding methods were 11-fold higher than those before the optimization (0.22 g/l and 1.52 mg/l/h, respectively). Thus, the optimization for the feeding methods of ginseng extract is an efficient strategy to increase C-K production. To our knowledge, this is the highest reported C-K concentration and productivity via fermentation reported so far.

Adsorption Characteristics Analysis of Trimethoprim in Aqueous Solution by Magnetic Activated Carbon Prepared from Waste Citrus Peel Using Box-Behnken Design (Box-Behnken Design을 이용한 수용액 중의 Trimethoprim에 대한 폐감귤박 자성활성탄의 흡착 특성)

  • Lee, Chang-Han;Lee, Min-Gyu;Hu, Chul-Goo;Kam, Sang-Kyu
    • Journal of Environmental Science International
    • /
    • v.31 no.8
    • /
    • pp.691-706
    • /
    • 2022
  • Magnetic activated carbon was prepared by adding a magnetic material to activated carbon that had been prepared from waste citrus peel in Jeju. The adsorption characteristics of an aqueous solution of the antibiotic trimethoprim (TMP) were investigated using the magnetic activated carbon, as an adsorbent, and response surface methodology (RSM). Batch experiments were carried out according to a four-factor Box-Behnken experimental design affecting TMP adsorption with their input parameters (TMP concentration: 50~150 mg/L; pH: 4~10; temperature: 293~323 K; adsorbent dose: 0.05~0.15 g). The significance of the independent variables and their interaction was assessed by ANOVA and t-test statistical techniques. Statistical results showed that TMP concentration was the most effective parameter, compared with others. The adsorption process can be well described by the pseudo-second-order kinetic model. The experimental isotherm data followed the Langmuir isotherm model. The maximum adsorption capacities of TMP, estimated with the Langmuir isotherm model were 115.9-130.5 mg/g at 293-323 K. Also, both the thermodynamic parameters, ΔH and ΔG, have both positive values, indicating that the adsorption of TMP by the magnetic activated carbon is an endothermic reaction and proceeds via an involuntary process.

Admittance Model-Based Nanodynamic Control of Diamond Turning Machine (어드미턴스 모델을 이용한 다이아몬드 터닝머시인의 초정밀진동제어)

  • Jeong, Sanghwa;Kim, Sangsuk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.10
    • /
    • pp.154-160
    • /
    • 1996
  • The control of diamond turning is usually achieved through a laser-interferometer feedback of slide position. The limitation of this control scheme is that the feedback signal does not account for additional dynamics of the tool post and the material removal process. If the tool post is rigid and the material removal process is relatively static, then such a non-collocated position feedback control scheme may surfice. However, as the accuracy requirement gets tighter and desired surface cnotours become more complex, the need for a direct tool-tip sensing becomes inevitable. The physical constraints of the machining process prohibit any reasonable implementation of a tool-tip motion measurement. It is proposed that the measured force normal to the face of the workpiece can be filtered through an appropriate admittance transfer function to result in the estimated dapth of cut. This can be compared to the desired depth of cut to generate the adjustment control action in additn to position feedback control. In this work, the design methodology on the admittance model-based control with a conventional controller is presented. The recursive least-squares algorithm with forgetting factor is proposed to identify the parameters and update the cutting process in real time. The normal cutting forces are measured to identify the cutting dynamics in the real diamond turning process using the precision dynamoneter. Based on the parameter estimation of cutting dynamics and the admitance model-based nanodynamic control scheme, simulation results are shown.

  • PDF

Characteristics of Structural Behavior and Safety Estimation of Water Supply GFRP Pipe (상수도용 유리섬유복합관의 구조적 거동특성 및 안전성 평가)

  • Lee, Bo-Be;Lee, Seung-Sik;Joo, Hyung-Jong;Yoon, Soon-Jng
    • Composites Research
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2009
  • In this paper, we present the results of experimental and analytical investigations on the structural behavior of GFRP pipes used in the water supply pipeline system. Cross-section of the pipe is consisted with two GFRP tubes and polymer mortar between the tubes. Due to the advantages such as light-weight, corrosion resistance, smooth surface, flexibility, etc., use of GFRP pipe in the water supply pipeline system is ever increasing trend. Therefore, more optimized structural design methodology should be developed. In the investigation, we conducted theoretical and analytical studies on the load versus radial deformation characteristics of GFRP pipes. In addition, ring stiffness test is also performed. Test results are compared with theoretical and analytical results and it was found that the results are agreed well within 5% of radial deformation. Finally, it was also found that the GFRP pipes used in the water supply pipeline system are strong enough to satisfy the industrial requirements.

Engineering Critical Assessement for an Independent Type-B LNG Cargo Tank (독립형 LNG 화물창의 공학적 결함 평가)

  • Jae Hoon Seo;Kyu-Sik Park;Inhwan Cha;Joonmo Choung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.4
    • /
    • pp.213-221
    • /
    • 2023
  • The demand for Liquefied Natural Gas (LNG) carriers and LNG-fueled ships has significantly increased in recent years due to the sulfur-oxide emission regulations by the International Maritime Organization (IMO). The main goal of this paper is to introduce the process for the Engineering Critical Assessment (ECA) of IMO independent type-B cargo tanks made from 9% nickel alloy. A methodology proposed by the British Standard was used to conduct ECA for any structure with initial flaws. Based on this standard, a Matlab code was developed to perform ECA. Coarse mesh Finite Element Analysis (FEA) was performed on an independent type-B LNG cargo tank with a capacity of 15,000 m3. The location with the highest development of maximum principal stress was identified at the bottom of the cargo tank. Fine mesh FEA was performed to obtain the stress range required for ECA. The dynamic cargo tank loads used for FEA were determined using some ship rules presented by Det Norske Veritas. As a result of performing a 20-year long-term crack propagation analysis with a semi-elliptical surface crack, the fracture-to-yield ratio exceeded the Fracture Assessment Line (FAL) and some structural reinforcement was necessary. Performing a 15-day short-term crack propagation analysis, the fracture-to-yield ratio remained within the FAL, and no significant LNG leaks were expected. This paper is believed to provide a guide for performing ECA of LNG cargo tanks in the future by providing the basic theory and application sample necessary to perform ECA.