• Title/Summary/Keyword: surface integration

Search Result 596, Processing Time 0.03 seconds

Conductivity Pattern Manufacture Technology of Solid Surface Compound Polymer Material (입체면 복합 폴리머 소재의 전도성 패턴 제작 기술)

  • Youn, Shin-Yong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.3
    • /
    • pp.224-234
    • /
    • 2016
  • This study developed the conductivity pattern of solid surface using laser direct pattern and compound polymer material technology. For development direct patterning system of solid surface, we used the laser power stabilizer, the dynamic focusing, 3D scanner S/W and the auto aligning techniques. Also For conductivity pattern, we are developed compound polymer material with additive by electro-less plating. These technologies are already used commercially. However operation and control integrated system for direct patterning of solid surface are not yet developed. The objective of this paper is to introduce the laser direct structuring for simple process improvement instead complex PCB process, and develop the operating stability and integration system. Also we implemented new application of laser direct structuring through sample manufacture.

Effect of titanium surface roughness on adhesion and differentiation of osteoblasts (티타늄 표면조도가 조골세포의 부착 및 분화에 미치는 영향)

  • Kim, Jung-Sik;Lee, Jae-Kwan;Ko, Sung-Hee;Um, Heung-Sik;Chang, Beom-Seok
    • Journal of Periodontal and Implant Science
    • /
    • v.35 no.4
    • /
    • pp.839-850
    • /
    • 2005
  • The success of an implant is determined by its integration into the tissue surrounding the biomaterial. Surface roughness is considered to influence the behavior of adherent cells. The aim of this in vitro study was to determine the effect of surface roughness on Saos-2 osteoblast-like cells. Titanium disks blasted with 75 ${/mu}m$ aluminum oxide particles and machined titanium disks were prepared. Saos-2 were plated on the disks at a density of 50,000 cells per well in 48-well dishes. After 1 hour, 1 day, 6 days cell numbers were counted. One day, 6 days after plating, alkaline phosphatase(ALPase) activity was determined. Compared to experimental group, the number of cells was significantly higher on control group. The stimulatory effect of surface roughness on ALPase was more pronounced on the experimental group than on control group. These results demonstrate that surface roughness alters proliferation and differentiation of osteoblasts. The results also suggest that implant surface roughness may play a role in determining phenotypic expression of cells.

Design Optimization of an Automotive Injection Molded Part for Minimizing Injection Pressure and Preventing Weldlines (사출압력 최소화와 웰드라인 방지를 위한 자동차용 사출성형 부품의 최적설계)

  • Park, Chang-Hyun;Pyo, Byung-Gi;Choi, Dong-Hoon;Koo, Man-Seo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.66-72
    • /
    • 2011
  • Injection pressure is an important factor in filling procedure for injection molded parts. In addition, weldlines should be avoided to successfully produce injection molded parts. In this study, we optimally obtained injection molding process parameters that minimize injection pressure. Then, we determined the thickness of the part to avoid weldlines. To solve the optimization problem proposed, we employed MAPS-3D (Mold Analysis and Plastics Solution-3 Dimension), a commercial CAE tool for injection molding analysis, and PIAnO (Process Integration, Automation, and Optimization) as a commercial PIDO (Process Integration and Design Optimization) tool. We integrated MAPS-3D into PIAnO, automated the analysis and design procedure, and performed optimization by employing PQRSM (Progressive Quadratic Response Surface Method) equipped in PIAnO. We successfully obtained optimization results, which demonstrates the effectiveness of our design method.

Seismic response analysis of an oil storage tank using Lagrangian fluid elements

  • Nagashima, Toshio;Tsukuda, Takenari
    • Coupled systems mechanics
    • /
    • v.2 no.4
    • /
    • pp.389-410
    • /
    • 2013
  • Three-dimensional Lagrangian fluid finite element is applied to seismic response analysis of an oil storage tank with a floating roof. The fluid element utilized in the present analysis is formulated based on the displacement finite element method considering only volumetric elasticity and its element stiffness matrix is derived by using one-point integration method in order to avoid volumetric locking. The method usually adds a rotational penalty stiffness to satisfy the irrotational condition for fluid motion and modifies element mass matrices through the projected mass method to suppress spurious hourglass-mode appeared in compensation for one-point integration. In the fluid element utilized in the present paper, a small hourglass stiffness is employed. The fluid and structure domains for the objective oil storage tank are modeled by eight-node solid elements and four-node shell elements, respectively, and the transient response of the floating roof structure or the free surface are evaluated by implicit direct time integration method. The results of seismic response analyses are compared with those by other method and the validation of the present analysis using three-dimensional Lagrangian fluid finite elements is shown.

Discontinuous finite-element quadrature sets based on icosahedron for the discrete ordinates method

  • Dai, Ni;Zhang, Bin;Chen, Yixue
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1137-1147
    • /
    • 2020
  • The discrete ordinates method (SN) is one of the major shielding calculation method, which is suitable for solving deep-penetration transport problems. Our objective is to explore the available quadrature sets and to improve the accuracy in shielding problems involving strong anisotropy. The linear discontinuous finite-element (LDFE) quadrature sets based on the icosahedron (in short, ICLDFE quadrature sets) are developed by defining projected points on the surfaces of the icosahedron. Weights are then introduced in the integration of the discontinuous finite-element basis functions in the relevant angular regions. The multivariate secant method is used to optimize the discrete directions and their corresponding weights. The numerical integration of polynomials in the direction cosines and the Kobayashi benchmark are used to analyze and verify the properties of these new quadrature sets. Results show that the ICLDFE quadrature sets can exactly integrate the zero-order and first-order of the spherical harmonic functions over one-twentieth of the spherical surface. As for the Kobayashi benchmark problem, the maximum relative error between the fifth-order ICLDFE quadrature sets and references is only -0.55%. The ICLDFE quadrature sets provide better integration precision of the spherical harmonic functions in local discrete angle domains and higher accuracy for simple shielding problems.

A Study on Architectural Expressive Characteristic of 'Structure & Skin Integration' Type in Contemporary Architecture - Focused on the Architecture cases after 2000 - (현대건축에서 구조와 표피 일체화 유형의 건축적 표현특성 - 2000년 이후 건축 사례를 중심으로 -)

  • Lee, Sang-Ho;Ban, Ja-Yuen
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.4
    • /
    • pp.43-50
    • /
    • 2016
  • This study tries to categorize trends of "structure and skin integration" and understand the expressive characters of each architectural type. To do so, we listed up 8 architects who are quoted twice or more in related researches, then analyzed their 25 contemporary buildings which integrated structure and skin since 2000. As a result, this study defined four types based on the way of building tectonic system of structure and skin. Key feature of "linear structure-two dimensional skin" type is the communication with the surroundings as a result of .geometric architectural forms, patterned surface and reflection. Characters of "linear-three dimensional" type are organic architectural forms, sculptural skin, and the mysterious space. "Planar-two dimensional" type is a transformational geometry form to express the dramatic images through the skin, therefore gives a sense of rhythm and dynamics to space. "Planar structure-three dimensional" type highlights the texture, and exposes boundary of the inside and outside. In architectures we studied, the structure is the way to make a creative forms and space, and the skin to express various meanings. That said, the "structure and skin integration" is the means of aggressive design expression.

Investigation of Growth Mechanism of Polymer, Ceramic and Metal Thick Films in Aerosol Deposition Method (Aerosol Deposition Method에 있어서 금속, 폴리머, 세라믹 후막의 성장 메커니즘 고찰)

  • Lee, Dong-Won;Nam, Song-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.346-346
    • /
    • 2008
  • 최근 디지털 컨버젼스에 의해서 정보 단말기 network가 디지털 기술을 기반으로 유기적으로 융 복합화 되고 있으며 BT, NT, ET, IT의 융합 기술의 필요성이 점차적으로 증대되고 있다. 이러한 환경 하에서 다양한 정보 및 서비스의 송신 및 수신이 가능한 휴대 단말기의 필요성에 부응하여 기존의 전화 기능, 카메라, DMB 이외에도 홈 네트워크, mobile internet 등 더욱 다양한 기능들이 요구되고 있다. 종래에는 수동 부품과 능동 부품의 실장을 별개로 추진했으나 최근에는 수동 및 능동 부품을 하나의 패키지 내에 실장 가능하도록 하는 3-D Integration을 추진하고 있다. 지금까지 여러 부품들을 실장 시키기 위한 공정들의 대부분은 높은 온도에서 공정이 이루어졌으나 여러 부품들을 손상 없이 집적화하고 실장하기 위해서는 저온화 공정이 필요하다. 최근 많은 저온 공정 중에서 Aerosol Deposition Method는 상온에서 세라믹 후막을 성막할 수 있어 가장 주목받고 있는 공정중의 하나이다. 본 연구에서는 3-D Integration을 실현하기 위해 이종 접합에 유리하고 상온에서 성막 공정이 이루어지는 Aerosol Deposition Method를 이용하여 금속 기판 위에 금속, 폴리머, 세라믹 후막을 성막시켰다. 기판 재료로는 Cu 기판을 사용하였으며 출발 파우더로는 Polyimide 파우더와 $Al_2O_3$ 파우더, Ag 파우더를 사용하였으며 이종 접합간의 메커니즘의 양상을 보기 위해 같은 조건에서 이종 접합간의 성막률을 비교하였으며 FE-SEM으로 미세 구조를 관찰하였다. 또한 기판의 표면 거칠기에 따른 메커니즘의 양상을 연구하였다.

  • PDF

FEM investigation of SFRCs using a substepping integration of constitutive equations

  • Golpasand, Gholamreza B.;Farzam, Masood;Shishvan, Siamak S.
    • Computers and Concrete
    • /
    • v.25 no.2
    • /
    • pp.181-192
    • /
    • 2020
  • Nowadays, steel fiber reinforced concretes (SFRCs) are widely used in practical applications. Significant experimental research has thus been carried out to determine the constitutive equations that represent the behavior of SFRCs under multiaxial loadings. However, numerical modelling of SFRCs via FEM has been challenging due to the complexities of the implementation of these constitutive equations. In this study, following the literature, a plasticity model is constructed for the behavior of SFRCs that involves the Willam-Warnke failure surface with the relevant evolution laws and a non-associated flow rule for determining the plastic deformations. For the precise (yet rapid) integration of the constitutive equations, an explicit substepping scheme consisting of yield intersection and drift correction algorithms is employed and thus implemented in ABAQUS via UMAT. The FEM model includes various material parameters that are determined from the experimental data. Three sets of parameters are used in the numerical simulations. While the first set is from the experiments that are conducted in this study on SFRC specimens with various contents of steel fibers, the other two sets are from the experiments reported in the literature. The response of SFRCs under multiaxial compression obtained from various numerical simulations are compared with the experimental data. The good agreement between numerical results and the experimental data indicates that not only the adopted plasticity model represents the behavior of SFRCs very well but also the implemented integration scheme can be employed in practical applications of SFRCs.

Simulation Analysis of Bio-Methane Decomposition Using Solar Thermal Energy (태양열 이용 바이오메탄 분해 해석연구)

  • Kim, Haneol;Lee, Sangnam;Lee, Sang Jik;Kim, Jongkyu
    • New & Renewable Energy
    • /
    • v.17 no.1
    • /
    • pp.40-49
    • /
    • 2021
  • In this study, the optical properties, heat transfer capabilities and chemical reaction performance of a methane thermal decomposition reactor using solar heat as a heat source were numerically analyzed on the basis of the cavity shape. The optical properties were analyzed using TracePro, a Monte Carlo ray tracing-based program, and the heat transfer analysis was performed using Fluent, a CFD program. An indirect heating tubular reactor was rotated at a constant speed to prevent damage by the heat source in the solar furnace. The inside of the reactor was filled with a porous catalyst for methane decomposition, and the outside was insulated to reduce heat loss. The performance of the reactor, based on cavity shape, was calculated when solar heat was concentrated on the reactor surface and methane was supplied into the reactor in an environment with a solar irradiance of 700 W/㎡, a wind speed of 1 m/s, and an outdoor temperature of 25℃. Thus, it was confirmed that the heat loss of the full-cavity model decreased to 13% and the methane conversion rate increased by 33.5% when compared to the semi-cavity model.

Integration of Shell Analysis and Surface Modeling (쉘 해석과 곡면 모델링의 연동)

  • Cho, Maeng-Hyo;Choi, Jin-Bok;Roh, Hee-Yuel
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.2
    • /
    • pp.181-190
    • /
    • 2007
  • The linkage framework of surface geometric modeling based on the NURBS and shell finite element analysis is developed in this study. In the geometrically exact shell finite element analysis, the accuracy of the analysis strongly depends upon the accurate computation of the surface geometric quantities. Therefore if we obtain the necessary geometric quantities from the NVRBS surface equation, it's possible to construct the effective linkage framework of surface modeling in the CAD systems and shell finite element analysis using geometrically exact shell finite element. Besides, the linkage framework can be applied to the analysis of general and complex surfaces as well as simple surfaces. In this study, the shell surfaces are generated by interpolating given set of data points based on the NURBS surfaces. These data points usually can be obtained from surface scanning. But the representations of the generated NURBS surface are not same to one another. The accuracy depends on the chosen parameterization methods used in NURBS. Therefore, it is needed to select the suitable parameterization method according to the geometry of the surfaces. To verify the performance and accuracy of our developed linkage framework, we solve several well-known benchmark problems and assess the performance of the developed method.