• Title/Summary/Keyword: surface heat budget

Search Result 54, Processing Time 0.023 seconds

Daily Variation of Heat Budget Balance in the Gangjeong-Goryung Reservoir for Summertime - Concerning around the Rate of Heat Storage - (낙동강 강정고령보의 여름철 열수지 일변화 - 열 저장량 변동을 중심으로 -)

  • Kim, Seong-Rak;Cho, Chang-Bum;Kim, Hae-Dong
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.721-729
    • /
    • 2015
  • Surface heat balance of the Gangjeong-Goryung Reservoir is analyzed for 12-17 August 2013. Each flux elements at the water surface is derived from the special field observations with application of an aerodynamical bulk method for the turbulent heat fluxes and empirical formulae for the radiation heat fluxes. The rate of heat storage in the reservoir is estimated by using estimated by surface heating rate and the vertical water temperature data. The flux divergence of heat transport is estimated as a residual. The features of the surface heat balance are almost decided by the latent heat flux and the solar radiation flux. On average for 12-17 August 2014 in the Gangjeong- Goryung Reservoir, if one defines the insolation at the water surface as 100 %, 94 % is absorbed in the reservoir; thereafter the reservoir loses about 30~50% by sensible heat, latent heat and net long-wave radiation. The residue of 50~80 % raises the water temperature in the reservoir or transported away by the river flow during the daytime.

EVALUATION OF SURFACE HEAT FLUXES FOR DIFFERENT LAND COVER IN HEAT ISLAND EFFECT

  • Chang, Tzu-Yin;Liao, Lu-Wei;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.68-71
    • /
    • 2008
  • Our goal is to obtain a better scientific understanding how to define the nature and role of remotely sensed land surface parameters and energy fluxes in the heat island phenomena, and local and regional weather and climate. By using the MODIS visible and thermal imagery data and analyzing the surface energy flux images associated with the change of the landcover and landuse in study area, we will estimate and present how significant is the magnitude of the heat island heat effect and its relation with the surface parameters and the energy fluxes in Taiwan. To achieve our objective, we used the energy budget components such as net radiation, soil heat flux, sensible heat flux, and latent heat flux in the study area of interest derived form remotely sensed data to understand the island heat effect. The result shows that the water is the most important component to decrease the temperature, and the more the consumed net radiation to latent heat, the lower urban surface temperature.

  • PDF

Heat Budget Analysis of Light Thin Layer Green Roof Planted with Zoysia japonica (한국잔디식재 경량박층형 옥상녹화의 열수지 해석)

  • Kim, Se-Chang;Lee, Hyun-Jeong;Park, Bong-Ju
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.6
    • /
    • pp.190-197
    • /
    • 2012
  • The purpose of this study was to evaluate thermal environment and heat budget of light thin layer green roof through an experiment in order to quantify its heat budget. Two concrete model boxes($1.2m(W){\times}1.2m(D){\times}1.0m(H)$) were constructed: One experiment box with Zoysia japonica planted on substrate depth of 10cm and one control box without any plant. Between June 6th and 7th, 2012, outside climatic conditions(air temperature, relative humidity, wind direction, wind speed), evapotranspiration, surface and ceiling temperature, heat flux, and heat budget of the boxes were measured. Daily maximum temperature of those two days was $29.4^{\circ}C$ and $30^{\circ}C$, and daily evapotranspiration was $2,686.1g/m^2$ and $3,312.8g/m^2$, respectively. It was found that evapotranspiration increased as the quantity of solar radiation increased. A surface and ceiling temperature of those two boxes was compared when outside air temperature was the greatest. and control box showed a greater temperature in both cases. Thus it was found that green roof was effective in reducing temperature. As results of heat budget analysis, heat budget of a green roof showed a greater proportion of net radiation and latent heat while heat budget of the control box showed a greater proportion of sensible heat and conduction heat. The significance of this study was to analyze heat budget of green roof temperature reduction. As substrate depth and types, species and seasonal changes may have influences on temperature reduction of green roof, further study is necessary.

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 취송류에 관한 수치해석)

  • Lee, Seong-Dae;Kim, In-Ho;Hong, Chang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1925-1930
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the wind generated current. In this paper, three dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flow over the coastal regions. The surface temperature of the inland was determined through the surface heat budget consideration with inclusion of a layer of vegetation. A series of numerical experiments were then carried out to investigate the diurnal response of the air flow and wind-generated circulation to various types of surface inhomogeneities.

  • PDF

Impacts of Different Urban Surfaces on Summer Thermal Performance

  • Jo, Hyun-Kil;Wu, Qian
    • Journal of Environmental Science International
    • /
    • v.24 no.6
    • /
    • pp.819-826
    • /
    • 2015
  • This study measured temperatures and albedos of urban surfaces for different colors and materials during summer, and calculated the energy budget over different urban surfaces to find out the thermal performance affecting the heat built-up. The study selected six surface colors and 13 materials common in urban landscape. Their surface temperatures (Ts) and albedos were measured at a given time interval in the daytime from June to August. Average Ts over summer season for asphalt-colored brick was $4.0^{\circ}C$ higher than that for light red-colored one and $9.7^{\circ}C$ higher than that for white-colored one. The Ts for artificial surface materials of asphalt paving, brown brick wall, and green concrete wall was $6.0^{\circ}C$ higher than that for natural and semi-natural ones of grass, grassy block, and planted concrete wall. There was the greatest difference of $16.3^{\circ}C$ at midafternoon in the Ts between asphalt paving and planted concrete wall. Average albedo over summer season of surface materials ranged from 0.08 for asphalt paving to 0.67 for white concrete wall. This difference in the albedo was associated with a maximum of $15.7^{\circ}C$ difference at midafternoon in the Ts. Increasing the albedo by 0.1 (from 0.22 to 0.32) reduced the Ts by about $1.3^{\circ}C$. Average storage heat at midday by natural and semi-natural surfaces of grass and grassy block was about 10% lower than that by artificial ones of asphalt, light-red brick, and concrete. Reflected radiation, which ultimately contributes to heating the urban atmosphere, was 3.7 times greater for light-red brick and concrete surfaces than for asphalt surface. Thus, surfaces with in-between tone and color are more effective than dark- or white-colored ones, and natural or semi-natural surfaces are much greater than artificial ones in improving the urban thermal environment. This study provides new information on correlation between Ts and air temperature, relationship between albedo and Ts, and the energy budget.

Parameters Estimation in Longwave Radiation Formula (장파복사 모형의 매개변수 추정)

  • Cho, Hongyeon;Lee, Khil-Ha;Lee, Jungmi
    • Journal of Environmental Impact Assessment
    • /
    • v.21 no.2
    • /
    • pp.239-246
    • /
    • 2012
  • Daily net radiation is essential for heat budget analysis for environmental impact assessment in the coastal zone and longwave radiation is an important element of net radiation because there is a significant exchange of radiant energy between the earth's surface and the atmosphere in the form of radiation at longer wavelengths. However, radiation data is not commonly available, and there has been no direct measurement for most areas where coastal environmental impact assessment is usually most needed. Often an empirical equation, e.g., Penman and FAO-24 formulae is used to estimate longwave radiation using temperature, humidity, and sunshine hour data but local calibration may be needed. In this study, local recalibration was performed to have best fit from a widely used longwave equation using the measured longwave radiation data in Korea Global Atmospheric Watch Center (KGAWC). The results shows recalibration can provided better performance AE=0.23($W/m^2$) and RMSE=14.73($W/m^2$). This study will contribute to improve the accuracy of the heat budget analysis in the coastal area.

A New Method to Retrieve Sensible Heat and Latent Heat Fluxes from the Remote Sensing Data

  • Liou Yuei-An;Chen Yi-Ying;Chien Tzu-Chieh;Chang Tzu-Yin
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.415-417
    • /
    • 2005
  • In order to retrieve the latent and sensible heat fluxes, high-resolution airborne imageries with visible, near infrared, and thermal infrared bands and ground-base meteorology measurements are utilized in this paper. The retrieval scheme is based on the balance of surface energy budget and momentum equations. There are three basic surface parameters including surface albedo $(\alpha)$, normalized difference vegetation index (NOVI) and surface kinetic temperature (TO). Lowtran 7 code is used to correct the atmosphere effect. The imageries were taken on 28 April and 5 May 2003. From the scattering plot of data set, we observed the extreme dry and wet pixels to derive the fitting of dry and wet controlled lines, respectively. Then the sensible heat and latent heat fluxes are derived from through a partitioning factor A. The retrieved latent and sensible heat fluxes are compared with in situ measurements, including eddy correlation and porometer measurements. It is shown that the retrieved fluxes from our scheme match with the measurements better than those derived from the S-SEBI model.

  • PDF

Atmospheric and Oceanic Factors Affecting the Air-Sea Thermal Interactions in the East Sea (Japan Sea) (東海海面 熱交換에 影響을 미치는 大氣 및 海洋的 要因)

  • Kang, Yong Q
    • 한국해양학회지
    • /
    • v.19 no.2
    • /
    • pp.163-171
    • /
    • 1984
  • The atmospheric and oceanic influences on the air-sea thermal interaction in the East Sea (Japan Sea) are studied by means of an analytic model which is based on the heat budget of the ocean. By means of the model, the model, the annual variations of heat fluxes and air temperatures in the East Sea are analytically simulated. The model shows that the back radiation, the latent heat and the sensible heat increase with the warn water advection. The latent heat increases with the sea surface temperature (SST) but the back radiation and the sensible heat dcrease as the SST increases. In the East Sea, an increase of mean SST by 1.0$^{\circ}C$ yields an increase of mean air temperature by 1.2$^{\circ}C$. The heat storage in the ocean plays an important role in the annual variations of heat flux across the sea surface.

  • PDF

A Numerical Analysis of Regional Atmospheric Circulation with Large Scale Reclamation of Coastal Region (대규모 해안매립에 따른 기상장 변동의 수치해석)

  • 이성대
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.46-54
    • /
    • 2000
  • Three dimensional numerical experiments that included the land-use transformation by the large scale reclamation were used to investigate the mesoscale air flow over the coastal regions. In this paper the surface temperature of the inland was determined through the surface heat budget consideration with inclusion of a layer of vegetation. The vertical diffusion coefficients of momentum, heat and specific humidity in the constant flux layer were taken from the Mellor and Yamada(1975). It has shown that the resulting model is able to reproduce the air circulation in coastal regions, and the simulated characteristics agree with the known properties of this circulation. A series of numerical experiments were then carried out to investigate the diurnal response of the air flow to various types of surface inhomogeneities.

  • PDF

Numerical Analysis of Meso-Scale Circulation with Inclusion of a Layer of Vegetation over Ulsan Area (식생의 영향을 고려한 울산지역의 중규모 지역기상장에 관한 연구)

  • Lee, Seong-Dae
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.2
    • /
    • pp.119-129
    • /
    • 1997
  • A three-dimensional numerical model for the simulation of meso-scale local circulation is developed and it is applied to the land and sea breezes which take place around Ulsan. The surface temperature and moisture on the land are determined by means of the surface heat budget with a layer of vegetation considered. The vertical diffusion coefficients of momentum, heat and specific humidity at the surface layer are obtained by the lever-2 model of the turbulence closure proposed by Yamada (1982). This model proved to be effective in simulating the structure of the land and sea breezes around Ulsan.

  • PDF