• 제목/요약/키워드: surface grinding machining

검색결과 220건 처리시간 0.026초

환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I) (A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I))

  • 황준;정의식
    • 한국정밀공학회지
    • /
    • 제22권6호
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.

전해 인프로세스 드레싱 연삭에서 AE를 이용한 가공안정성 감시에 관한 연구 (A Study on the Monitoring of Grinding Stability Using AE Sensor in Electrolytic In-Process Dressing Grinding)

  • 김태완;이종렬;이득우;송지복;최대봉
    • 대한기계학회논문집A
    • /
    • 제23권6호
    • /
    • pp.1011-1017
    • /
    • 1999
  • Electrolytic in-process dressing grinding technique which enables application of metal bond wheels with fine superabrasives in mirror surface grinding operations has developed. It is possible to make efficient precision machining of hard and brittle material such as ceramic and hard metal by the employment of this technique. However, in order to ensure the success of performances such as efficient machining, surface finish, and surface quality, it is important to sustain the insulating layer that has sharply exposed abrasives in wheel surface. Using AE(Acoustic Emission) sensor, this paper will show whether the insulating layer sustains stably or not in real grinding time. And by comparing AErms value and surface roughness their thresholds for stable electrolytic in-process dressing grinding will be determined.

연삭기법을 이용한 패터닝 기술 (Grinding Technology for Surface Texturing)

  • 고태조;한두섭;구강;박종권
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.

마이크로 필름을 이용한 경면연마가공 특성에 관한 연구 (A Study on the Characteristics of the Mirror Surface Abrasive Finishing using Micro Abrasive Film)

  • 김홍배;배명일;남궁석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.970-976
    • /
    • 1997
  • The ultra-precision machining is widely used for final machining process of precision parts, so in this study, mirror surface finishing systems using the micro abrasive film, one of ultra-precision machining method, have to examine mirror surface characteristics of the cylindrical workpiece(SM45) such as surface roughness, workpiece removal and evaluated under the condition varing film feed rate, applied pressure, grinding speed after fixing other condition. It was found that varrious machining condition have significant influences on workpiece removal, surface roughness.

  • PDF

비구면 평행연삭에서의 휠구면형상 창성오차 (Wheel curve generation error of aspheric grinding in parallel grinding method)

  • 황연;;이선규
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.344-349
    • /
    • 2005
  • This paper presents a geometrical error analysis of wheel curve generation method for micro aspheric surface machining using parallel grinding method. In aspheric grinding, wheel wear in process is crucial parameter for profile error of the ground surface. To decrease wheel weal parallel grinding method is adopted. Wheel and work piece (Tungsten carbide) contact point changes during machining process. In truing process of the wheel radius is determined by the angle and distance between wheel and truer. Wheel radius error is predominantly affected by vertical deviation between the wheel rotation center and the truer center Simulation for vertical error and wheel radius error shows same tendency that expected by geometrical analysis. Experimental results show that the analysis of curve generation method matches with simulations and wheel radius errors.

  • PDF

반응표면모델(RSM)에 의한 평면연삭조건 최적화 및 평가 (Analysis and Optimization of Grinding Condition by Response Surface Model)

  • 김상오;곽재섭;구양;심성보;정영득;하만경
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.1257-1260
    • /
    • 2005
  • Grinding process has unique characteristics compared with other machining processes. The cutting edges of the grinding wheel don't have uniformity and act differently on the workpiece at each grinding. The response surface analysis is one of various methods for optimizing and evaluating the process parameters to achieve the desired output. In this study, the effect of the grinding parameters on outcomes of the surface grinding was analyzed experimently. To predict the grinding outcomes and to select the grinding conditions before grinding, the second-order response surface models for the grinding force and the surface roughness were developed.

  • PDF

밀링용 인서트의 가공특성에 관한 연구 (Study on the Machining Characteristics of Cutting Inserts)

  • 조준현;황인환;박상현;이종찬
    • 한국기계가공학회지
    • /
    • 제12권3호
    • /
    • pp.76-80
    • /
    • 2013
  • This paper reports some experimental results on the machining performance of ground & non-ground milling inserts. Five kinds of milling inserts were manufactured without grinding process and one milling insert was manufactured with grinding process. Machining experiments were carried out to compare the performance of ground & non-ground inserts. This experimental result indicate that tool wear, cutting force and surface roughness of the each tool. From the result five milling inserts that have non-grinding process and one milling insret that have grinding process compared appear.

평행연삭과 자기연마에 의한 유리렌즈 성형용 코어 금형의 표면가공 특성 (Investigation for Mirror-surface Machining Properties of Mold Core of Glass Molding Press by Parallel Grinding and Magnetic Assistance Polishing)

  • 이용철;김경년;곽태수
    • 한국정밀공학회지
    • /
    • 제27권12호
    • /
    • pp.22-27
    • /
    • 2010
  • The usage of ultra-precision machining is increasing by the manufacturing of precision optical elements such as camera lens, laser printer, CD player, DVD and microscope parts etc.. The WC alloy material is in wide use by mold core to improve the productivity and accuracy in manufacturing those precision parts. The WC alloy mould core can be machined effectively by the parallel grinding process which is an excellent technique for manufacturing of surface profile hard to machining materials such as the hardened metal alloy, Ceramics, Glass and so on. Magnetic assisted polishing as a final polishing process has also been utilized to obtain ultra-precision mirror surface with the elimination of traces presented on ground surface. It is able to deduce the optimal ultra-precision machining conditions of the WC alloy material from the experiment and analyses results.

ENGINEERING CERAMICS의 평면연삭가공 특성에 관한 연구

  • 김호철;김원일;강재훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 추계학술대회 논문집
    • /
    • pp.136-144
    • /
    • 1992
  • Recently, Silicon Nitrde ceramic is regarded as the representative engineering ceramic with the excellent mechanical properties and many functions for mechanical components and parts among various kinds of ceramics in the mechanical industry. But, during the manufacturing of engineering ceramics, there is many volumetric shrinkage coupled with a distortion of the parts which is produced. Due to the requirement for high accuracy of size, form, and surface finish of the components, machining is needed surely. Nowdays, grinding with a resin bond type diamond wheels has been generally applied to machining of the engineering ceramics in the whole world because that it can be conveniently proceeded for workers to dress of tool and made with high reliability in producing factories among many bond type super-abrasive wheels yet. It is important task for attaining prescribed mechanical components with high reliability to observe the grinding mechanism of ceramics as like generation of cracks and chipping of material during process. Because they considerably effects on the strength characteristic of machined mechanical components. In this study, various surface grinding experiments using resin bond type diamond wheels are carried out for Silicon Nitride ceramic. Grinding mechanism of ceramics is observed experimentally and the relationship with various conditions is also attained. Form this experimental study, some useful machining data and information to determine proper machining condition for grinding of Silicon Nitride ceramic is obtained.

평면연삭에서의 연삭수명 평가 (Grinding Wheel Life in Surface Grinding)

  • 최성삼;구양;허정식
    • 한국기계가공학회지
    • /
    • 제1권1호
    • /
    • pp.101-108
    • /
    • 2002
  • In the grinding process, the degree of the sharpness in wheel gram affects the surface roughness and the dimensional accuracy. If a wheel with dull grains is used, the grinding force will be increased and the surface roughness deteriorated. To produce a precision component, the magnitude of parameters related to the wear amount of a grinding wheel has to be limited. In this study, a variation of the grinding force and the surface roughness were measured to seek the machining characteristics of the W A and CBN wheels. From the wear amount of the grinding wheel and the removal rate of workpiece, the grinding ratio was calculated. And also the wheel life was determined at a rapid decreasing point of the grinding ratio. The difference between the surface of wheel-workpiece before grinding and after wheel life was clearly verified with a microscopic photo.

  • PDF