• 제목/요약/키워드: surface grinding machining

검색결과 220건 처리시간 0.031초

실험계획법과 보정가공을 이용한 비구면 유리렌즈 성형용 코어의 초정밀 연삭가공 최적화 (Ultra-precision Grinding Optimization of Mold Core for Aspheric Glass Lenses using DOE and Compensation Machining)

  • 김상석;이용철;이동길;김혜정;김정호
    • 한국정밀공학회지
    • /
    • 제24권6호
    • /
    • pp.45-50
    • /
    • 2007
  • The aspheric lens has become the most popular optical component used in various optical devices such as digital cameras, pick-up lenses, printers, copiers etc. Using aspheric lenses not only miniaturizes and reduces the weight of products, but also lower prices and higher field angles can be realized. Additionally, plastic lenses are being changed to glass lenses more recently because of low accuracy, low acid-resistance and low thermal-resistance in the plastic lenses. Currently, one fabrication method of glass lenses is using a glass-mold method with a high precision mold core for mass production. In this paper, DOE (Design Of Experiments) and compensation machining were adopted to improve the surface roughness and the form accuracy of the mold core. The DOE has been done in order to discover the optimal grinding conditions which minimize the surface roughness with factors such as work spindle revolution, turbine spindle revolution, federate and cutting depth. And the compensation machining is used to generate high form accuracy of the mold core. From various experiments and analyses, we could obtain the best surface roughness 5 nm in Ra, form accuracy $0.167\;{\mu}m$ in PV.

절삭가공이 알루미늄 경질 아노다이징 피막에 미치는 영향 (Effect of Machining on Hard Anodizing Surface of Aluminum)

  • 김수진;문정일
    • 한국기계가공학회지
    • /
    • 제21권8호
    • /
    • pp.87-92
    • /
    • 2022
  • The Al3003 aluminum plate was cut by grinding, milling, sawing, and shearing, and the hard-anodizing surface of the material was investigated. Large burrs were formed during grinding and milling. The brittle anodized film split and migrated along the deformed aluminum surface. During shearing, the hard-anodized film on the blade entry surface cracks and slides along the deforming aluminum. The cutting heat increased the ductility of the aluminum and further promoted burr formation. The oil-based coolant suppressed burrs and prevented chips from sticking to the endmill. It is better to avoid the high cutting speed and slow material feed rate conditions, which increase the cutting temperature and burr in the band saw.

FC200 소재의 평면연삭 가공특성에 관한 연구 (A Study on the Surface Grinding Machining Characteristics of FC200 Material)

  • 양동호;이상협;차승환;이종찬
    • 한국기계가공학회지
    • /
    • 제21권6호
    • /
    • pp.36-43
    • /
    • 2022
  • Automobile brake discs are a major part of automobiles that are directly related to driver safety, and prevention of judder and squall noise is very important. This phenomenon occurs for complex reasons such as the precision and assembly of the brake module, and the material of the brake disc. The purpose of this study is to analyze the effect of the grinding wheel's grain size on the grinding conditions when machining cast iron, the material of the brake disc, and to derive the optimal grinding conditions through this.

리드 핀 제조용 펀치 금형의 홈 가공에 관한 연구 (A Study on Slot Grinding for Lead Pin Punching Die)

  • 이용찬;정상철;정해도
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.106-113
    • /
    • 2000
  • One of the recent changes in machining technology is rapid application of micro- and high precision grinding processes. A fine groove generation is necessary for the fabrication of optics, electronics and semiconductor parts. Slot grinding is very efficient for the generation of micro ordered groove with hard and brittle materials. In the process of slot grinding, chipping at the sharp edges and microcracks of the ground grooves are inevitable defects. Chipping should be reduced for the improvement of surface integrity. Mechanical contact with diamond grits causes microcracks at the grooves. This damage resides subsurface, and can be the cause of failure of the punch die. This paper deals with chipping generation at the sharp edges, surface integrity of side groove and fracture strength is related to the microcracks in the slot grinding.

  • PDF

금형강(STD11)의 연삭가공조건 최적화를 위한 기초 연구 (Fundamental Study for Optimization of Grinding Condition Using STD11 Material)

  • 이영석;하만경;곽재섭;류인일
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.903-906
    • /
    • 1997
  • For the net shape manufacturing, grinding is a important process that influences directly the accuracy and the integrity of products. We studied and researched the grinding force, surface roughness, and grinding wheel durability, according to the change of a feed speed of the table and a depth of the cut step by step with experiment that it is used to WA wheel. Workpiece materials were used STDII. The purpose of this study proposes the basic data for design of the machine tool and for controlling the machining parameters to obtain optimum performance of plunge grinding system during operation.

  • PDF

사파이어 웨이퍼의 ELID 랩핑 가공 특성에 관한 연구 (A Study on Characteristics of ELID Lapping for Sapphire Wafer Material)

  • 곽태수;한태성;정명원;김윤지;우에하라 요시히로;오오모리 히토시
    • 한국정밀공학회지
    • /
    • 제29권12호
    • /
    • pp.1285-1289
    • /
    • 2012
  • This study has been focused on application of ELID lapping process for mirror-surface machining of sapphire wafer. Sapphire wafer is a superior material with optic properties of high performance as light transmission, thermal conductivity, hardness and so on. High effective surface machining technology is necessary to use sapphire as various usages. The interval ELID lapping process has been set up for lapping of the sapphire material. According to the ELID lapping experimental results, it shows that 12.5 kg of load for lapping is most pertinent to ELID lapping. the surface of sapphire can be eliminated by metal bonded wheel with micron abrasives and the surface roughness of 60 nmRa can be gotten using grinding wheel of 2,000 mesh in 4.5 um, depth of cut. In this study, the chemical experiments after ELID grinding also has been conducted to check chemical reaction between workpiece and grinding wheel on ELID grinding process. It shows that the chemical reaction has not happened as the results of the chemical experiments.

초음파 진동 테이블이 질화알루미늄 세라믹의 ELID 연삭 가공에 미치는 영향 (The Effect of Ultrasonic Vibration Table on ELID Grinding Process of Aluminum Nitride Ceramics)

  • 곽태수;정명원;김건희;곽인실
    • 한국정밀공학회지
    • /
    • 제30권12호
    • /
    • pp.1237-1243
    • /
    • 2013
  • This study has focused on the effect of ultrasonic vibration table in ELID grinding process of aluminum nitride ceramics. Aluminum nitride ceramics has superior physical and chemical properties and widely used in IC, LSI substrate, package and so on. To achieve the high effective machining of brittle and high strength ceramics as like aluminum nitride, machining method combined ELID grinding and ultrasonic vibration has been adopted in this study. From the experimental results, material removal rate, MRR has been increased maximum 36 percent and spindle resistance has been decreased in using ultrasonic table. Surface roughness of ground surface became a little worse in using ultrasonic table but was somewhat improved in feed direction.

초정밀 비구면 렌즈 금형가공시스템 개발 (Development of machining system for ultra-precision aspheric lens mold)

  • 백승엽;이하성;강동명
    • Design & Manufacturing
    • /
    • 제2권1호
    • /
    • pp.33-38
    • /
    • 2008
  • As consumer in optics, electronics, aerospace and electronics industry grow, the demand for ultra precision aspherical surface lens increases higher. Precision turning with single-diamond tools has a long history of development for fabrication of optical quality surfaces since the advent of aerostatic rotary spindles and precise linear motion guide ways. To enhance the precision and productivity of ultra precision aspherical surface micro lens, the following specification of ultra precision grinding system is required: the highest rotational speed of the grinder is 100,000rpm and its turning accuracy is $0.1{\mu}m$, positioning accuracy is $0.1{\mu}m$. The development process of the grinding system for the ultra precision aspherical surface micro lens for optoelectronics industry is introduced. In the work reported in this paper, an intelligent grinding system for ultra precision aspherical surface machining was designed by considering the factors affecting the surface roughness and profiles accuracy. An aerostatic form was adopted to build the spindle of the workpiece and the spindle of grinder and ultra precision LM guide way was adopted in this system. And this paper deals with mirror grinding of an aspheric surface micro lens by resin bonded diamond wheel and spherical lens of BK7. It results was that a form accuracy of $0.6{\mu}m$ P-V and a surface roughness of $0.006{\mu}m$ Rmax.

  • PDF

티타늄합금의 와이어 방전가공과 후처리 연삭가공 특성 (The Characteristics of Wire Electrical Discharge Machining and Final Surface Grinding for Titanium Alloy)

  • 왕덕현;김원일;김종업
    • 한국공작기계학회논문집
    • /
    • 제11권6호
    • /
    • pp.10-16
    • /
    • 2002
  • Titanium alloys have the characteristics of lightness, high strength and good corrosion resistant and are broadly used in manufacturing parts for military and aerospace industries. These alloys are also recognized for organism materials comparatively and used as fixing ones in human body. Nevertheless titanium alloys have excellent properties, it is difficult to machine by traditional methods because of high hardness and chemically activated property. So higher tool wear is expected when cutting by conventional tools, so it is required nontraditional machining process. Finally, the mechanical characteristics such as surface roughness, shape and hardness on studied for wire electrical discharge machined and pound surfaces of titanium alloys for different heat-tested conditions.