• Title/Summary/Keyword: surface forces

Search Result 1,168, Processing Time 0.027 seconds

A Data Acquisition System based upon a Single-board Microcomputer (단일보드 마이크로 컴퓨터를 이용한 자료(資料) 수집장치(蒐集裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.4
    • /
    • pp.221-228
    • /
    • 1989
  • A data acquisition system was designed to measure the forces on a rolling coulter in three coordinated directions, angular velocity of the coulter and travel speed of a soil bin. The data acquisition system consisted of a dynamometer, speed transducers, a signal conditioner, an inter-face board, an Aim-65 microcomputer and a digital data recorder. Strain gages were attached on the surface of the dynamometer and connected to form three Wheatstone bridges, which measure the draft force, the vertical force and the side force on the coulter. An interaction among three dimensional forces was found during the calibration. A matrix procedure was used to correct the forces for this interaction. Rotary shaft encoders were mounted on the coulter and on the soil bin drive to measure the angular velocity of the coulter and the travel speed of the soil bin. The angular velocity and the travel speed were computed by counting the number of pulse signals from the rotary shaft encoders every 0.2 second. The digital signals from the rotary shaft encoders were connected to counters and the analog signals from the dynamometer, after passing through the signal conditioner, were connected to the A/D converter. The microcomputer programs, written in assembly language, were developed to read signals from the transducers, convert them to actual unit, display them upon request and record them on a sigital tape every 0.2 second.

  • PDF

A comparison study of water impact and water exit models

  • Korobkin, Alexander;Khabakhpasheva, Tatyana;Malenica, Sime;Kim, Yonghwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.6 no.4
    • /
    • pp.1182-1196
    • /
    • 2014
  • In problems of global hydroelastic ship response in severe seas including the whipping problem, we need to know the hydrodynamic forces acting on the ship hull during almost arbitrary ship motions. In terms of ship sections, some of them can enter water but others exit from water. Computations of nonlinear free surface flows, pressure distributions and hydrodynamic forces in parallel with the computations of the ship motions including elastic vibrations of the ship hull are time consuming and are suitable only for research purposes but not for practical calculations. In this paper, it is shown that the slamming forces can be decomposed in two components within three semi-analytical models of water entry. Only heave motion is considered. The first component is proportional to the entry speed squared and the second one to the body acceleration. The coefficients in these two components are functions of the penetration depth only and can be precomputed for given shape of the body. During the exit stage the hydrodynamic force is proportional to the acceleration of the body and independent of the body shape for bodies with small deadrise angles.

New analytical solutions to water wave diffraction by vertical truncated cylinders

  • Li, Ai-jun;Liu, Yong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.952-969
    • /
    • 2019
  • This study develops new analytical solutions to water wave diffraction by vertical truncated cylinders in the context of linear potential theory. Three typical truncated surface-piercing cylinders, a submerged bottom-standing cylinder and a submerged floating cylinder are examined. The analytical solutions utilize the multi-term Galerkin method, which is able to model the cube-root singularity of fluid velocity near the edges of the truncated cylinders by expanding the fluid velocity into a set of basis function involving the Gegenbauer polynomials. The convergence of the present analytical solution is rapid, and a few truncated numbers in the series of the basis function can yield results of six-figure accuracy for wave forces and moments. The present solutions are in good agreement with those by a higher-order BEM (boundary element method) model. Comparisons between present results and experimental results in literature and results by Froude-Krylov theory are conducted. The variation of wave forces and moments with different parameters are presented. This study not only gives a new analytical approach to wave diffraction by truncated cylinders but also provides a reliable benchmark for numerical investigations of wave diffraction by structures.

Theoretical Study on the Dynamic Response of a Moored Buoy with Minimum Vertical Wave-exciting Force in Irregular Waves (수직운동(垂直運動)이 최소(最小)인 부표(浮標)의 불규칙파(不規則波)중 계류상태(繫留狀態)에 대한 동력학적(動力學的) 해석(解析))

  • H.S.,Choi;Hyo-Chul,Kim;Woo-Jae,Seong
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 1984
  • A body form, which experiences minimum vertical wave-exciting forces in the vicinity of a prescribed wave frequency in water of finite depth, is obtained by an approximate method. Its configuration has the symmetry with respect to the vertical axis, expressed in terms of exponential functions. By distributing three-dimensional pulsating sources and dipoles on the immersed surface of the body, a velocity potential is determined and subsequently hydrodynamic forces including the 2nd-order time-mean drift forces are calculated. The dynamic behavior of the body moored in irregular waves is investigated numerically by using central difference method. Hereby irregular wave trains are simulated with examining its repeatability by comparing the resulting spectrum with original one. Numerical results indicated that the body form obtained from the present analysis possesses in general a favorable hydrodynamic characteristics in comparison with a spherical buoy and that the maximum excursion of the body can be significantly reduced by setting pre-tension of an appropriate amount in the mooring cable.

  • PDF

Experimental Evaluation of Q-Parameterization Control for the Imbalance Compensation of Magnetic Bearing Syatem (Q-매개변수화 제어를 이용한 자기축수 시스템의 불평형 보상에 대한 실험적평가)

  • Lee, Jun-Ho;Kim, Hyeon-Gi;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.278-285
    • /
    • 1999
  • This paper utilizes the method of Q-parameterization control to design a controller which solves the problem of imbalance in magnetic bearing systems. There are two methods to solve this problem using feedback controal. The first method is to compensate for the imbalance forces by generating opposing forces on the bearing surface (imbalance compensation). The second method is to make the rotor rotate around its axis of inertia (automatic balancing);in this case no imbalance forces will be generated. In this paper we deal with only imbalance compensation. The free parameter of the Q-parameterization controller is chosen such that these goals are achieved. After the introduction of a model of the magnetic bearing system, we explain the Q-parameterization controller design of the magnetic bearing system with emphasis on the rejection of sinusoidal disturbance for imbalance compensation design. The design objectives are formulated as a linear equations in the controller free paramete Q. Finally, simulation and experimental results are presented and showed the robustness and effectiveness of the proposed controllers.

  • PDF

Effects of photostrictive actuator and active control of flexible membrane structure

  • Gajbhiye, S.C.;Upadhyay, S.H.;Harsha, S.P.
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.71-83
    • /
    • 2014
  • The purpose of this paper is to investigate the flexible structure of parabolic shell using photostrictive actuators. The analysis is made to know its dynamic behavior and light-induced control forces for coupled parabolic shell. The effects of an actuator location as well as membrane and bending components under the control action have been analyzed considering the approximate spherical model. The parabolic membrane shell accuracy is being mathematically approximated and validated comparing the light induced control forces using approximate equivalent spherical shell model. The parabolic shell with kapton smart material and photostrictive actuators has been used to formulate the governing equation in the transverse direction. The Kirchhoff-Love assumptions are used to obtain the governing equation of shell with actuator. The mechanical membrane forces and bending moments for parabolic thin shell with actuator is used to analyze the dynamic effect. The results show that membrane control action is much more significant than bending control action. Photostrictive actuators oriented along circumferential direction (actuator-2) can give better control effect than actuators placed along longitudinal direction (actuator-1). The slight difference is observed between spherical and parabolic shell for a surface with focal length to the diameter ratio of 1.00 or more than unity. Space applications often have the shape of parabolical shells or shell of revolution, due to their required focusing, aiming, or reflecting performance. The present approach is focused that photostrictive actuators can effectively control the vibration of parabolical membrane shell. Also, the actuator's location plays an important role in defining the control force.

Influence of Stripping and Counter Punching Forces on Fine Blanking Characteristics of T-shaped Products (T형 제품의 파인 블랭킹 가공 특성에 미치는 스트리핑력과 카운터 펀칭력의 영향)

  • Kim, J.H.;Ryu, J.G.;Sim, K.S.;Kim, D.H.;Chang, Y.D.;Lee, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.6
    • /
    • pp.15-21
    • /
    • 1997
  • This study is performed for investigating the effects of stripping and counter punching forces on shearing characteristics in fine blanking of T-shaped products, such as camber, burr-height and dimensional accuracy, etc by experiments. Conventional hydraulic press is used for experiments so that both the stripping force and counter punching force can be arbitrarily adjusted by another hydraulic unit connected to the fine blanking die. Specimens are selected as hot rolled steel sheet and carbon steel sheet commonly used in auto- mobile company. Based on the experimental results, both the dimensional accuracy and the burr height are not influenced by the stripping and counter punching forces, wherease the camber height representing dish- shaped deflection is much influenced by them, it can be seen through this study that the finely cut surface of T-shaped blank can be obtained even in conventional hydraulic press if additional equipments and specially designed die are employed.

  • PDF

Finding the optimum shape of the energy dissipator to minimize the impact force due to the dam break flow

  • Asrini Chrysanti;Sangyoung Son
    • Ocean Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.157-169
    • /
    • 2024
  • The sudden release of water from a dam failure can trigger bores on a flat surface and exert substantial impact forces on structures. This flow poses a high-risk flood hazard to downstream urban areas, making it imperative to study its impact on structures and devise effective energy dissipators to mitigate its force. In this study, a combination of Genetic Algorithm optimization and numerical modeling is employed to identify the optimal energy dissipator. The analysis reveals that a round arc-shaped structure proves most effective, followed by a triangular shape. These shapes offer wide adaptability in terms of structure dimensions. Structures with higher elevation, especially those with round or triangular shapes, demonstrate superior energy dissipation capabilities. Conversely, square-shaped structures necessitate minimal height to minimize impact forces. The optimal width for dissipating energy is found to be 0.9 meters, allowing for effective wave run-up and propagation. Furthermore, the force exerted on structures increases with higher initial water levels, but diminishes with distance from the dam, highlighting the importance of placement in mitigating impact forces.

Prediction of the Milled Surface Shapes Considering Tool Deflection Effects in Profile Milling Process (윤곽밀링시 공구변형에 의한 절삭표면 형상의 예측)

  • Seo, Tae-Il;Cho, Myeong-Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.203-209
    • /
    • 1999
  • In this paper, we present the methods to predict the milled surface shapes in profile milling process. In the cutting process, tools are deflected due to the cutting forces varying with the imposed depth of cut and feedrate. Thus, the final shapes of the milled surface, generated by the nominal tool trajectory, are different from the required profile. In order to predict the milled surface shapes, we present two methods based on: (1) the deflected tool profile and (2) the trace of contact point between the tool and the workpiece. In the first method, we make an assumption that the milled surface corresponds to the deflected tool profile. In another method, we make we make an assumption that the milled surface is generated by the trace of the contact point between the cutting edge of the tool and workpiece. We present the surface generation process by calculating the trajectory of the contact points on the workpiece. Several simulations and experiments are performed to verify the proposed milled surface prediction methods.

  • PDF

Buckling influence of intermediate filaments with and without surface effects

  • Taj, Muhammad;Khadimallah, Mohamed A.;Ayed, Hamdi;Hussain, Muzamal;Mahmood, Shaid;Ahmad, Imtiaz
    • Advances in nano research
    • /
    • v.12 no.4
    • /
    • pp.365-374
    • /
    • 2022
  • Intermediate filaments are the mechanical ropes for both cytoskeleton and nucleoskeleton of the cell which provide tensile force to these skeletons. In providing the mechanical support to the cell, they are likely to buckle. We used conventional Euler buckling model to find the critical buckling force under different boundary conditions which they assume during different functions. However, there are many experimental and theoretical studies about other cytoskeleton components which demonstrate that due to mechanical coupling with the surrounding surface, the critical buckling force increases considerably. Motivated with these results, we also investigated the influence of surface effects on the critical buckling force of intermediate filaments. The surface effects become profound because of increasing ratio of surface area of intermediate filaments to bulk at nano-scale. The model has been solved analytically to obtain relations for the critical forces for the buckling of intermediate filaments without and with surface effects. We found that critical buckling force with surface effects increases to a large extent due to mechanical coupling of intermediate filaments with the surrounding surface. Our study may be useful to develop a unified experimental protocol to characterize the physical properties of Intermediate filaments and may be helpful in understanding many biological phenomenon involving intermediate filaments.