• Title/Summary/Keyword: surface flatness

Search Result 129, Processing Time 0.026 seconds

A study on wafer processing using backgrinding system

  • Seung-Yub Baek
    • Design & Manufacturing
    • /
    • v.18 no.2
    • /
    • pp.9-16
    • /
    • 2024
  • Recently, there has been extensive research conducted on the miniaturization of semiconductors and the improvement of their integration to achieve high-quality and high-performance electronic devices. To integrate and miniaturize multiple semiconductors, thin and precise wafers are essential. The backgrinding process, which involves high-precision processing, is necessary to achieve this. The backgrinding system is used to grind and polish the back side of the wafer to reduce its thickness to ㎛ units. This enables the high integration and miniaturization of semiconductors and a flattening process to allow for detailed circuit design, ultimately leading to the production of IC chips. As the backgrinding system performs precision processing at the ㎛ unit, it is crucial to determine the stability of the equipment's rigidity. Additionally, the flatness and surface roughness of the processed wafer must be checked to confirm the processability of the backgrinding system. IIn this paper, the goal is to verify the processability of the back grinding system by analyzing the natural frequency and resonance frequency of the equipment through computer simulation and measuring and analyzing the flatness and surface roughness of wafers processed with backgrinding system. It was confirmed whether processing damage occurred due to vibration during the backgrinding process.

Development of Surface Roughness Index using Gyroscope (자이로스코프를 이용한 노면 평탄도 분류지수 개발)

  • Hong, Sun-Gi;Park, Jun-Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.3
    • /
    • pp.127-132
    • /
    • 2020
  • In this study, the process of providing information necessary to remove physical barriers such as road slopes that obstruct the activities of the disabled is in progress. Through experiments, we implement a quantified road surface roughness index that enables the implementation of IoT-based systems necessary for the elderly and the disabled to safely move to their destination. As a preliminary study, a road surface measurement device using a gyroscope was devised. To check the roughness and flatness of the road surface, X, Y displacement, and acceleration displacement were measured using a gyroscope. By calculating the measured data, the roughness and flatness of the road surface were quantified from 0 to 100. We implemented an algorithm that divides this index into 4 stages, displays it on a map, and provides it to users. Finally, a system for the disabled and elderly electric wheelchair users to secure basic mobility was established.

Flatness Measurement of Microstructures using an Optical Method (광학적 방법을 이용한 마이크로 구조물의 편평도 측정)

  • Min, Sung-Wook;Jung, Jae-Hoon;Song, Min-Ho;Lee, Byoung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1735-1737
    • /
    • 1996
  • Using a modified Michelson interferometer configuration, the flatness of micro mirror cell surface was probed. Interferograms were captured at CCD camera plane by defocusing object beam onto the micro mirror with microscope objective lens. And these were compared with the interferograms made with the flat metallic mirror. Also, the theoretical analysis is presented.

  • PDF

Design of Wideband Microwave Absorbers Using Reactive Salisbury Screens with Maximum Flat Reflection

  • Kim, Gunyoung;Kim, Sanghoek;Lee, Bomson
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.2
    • /
    • pp.71-81
    • /
    • 2019
  • This paper presents a design methodology for wideband single-layered microwave absorbers with arbitrary absorption at the design center frequency using reactive Salisbury screens. The bandwidth of the absorber increases when the flatness of the reflection response at the design center frequency is maximized. Based on this observation, closed-form design formulas for wideband absorbers are derived. As they are scalable to any design frequency, wideband reactive screens can be systematically realized using two-dimensional periodic crossed-dipole structures patterned on a resistive sheet. Based on this method, a single-layered absorber with a 90% bandwidth improved to 124% of the design center frequency is presented. For the purpose of physical demonstration, an absorber with a design center frequency of 10 GHz is designed and fabricated using a silver nanowire resistive film with a surface resistance of 30 Ω/square. The measured absorption shows a good agreement with both the calculation and the electromagnetic simulation.

Modeling of Sand Blasting Process for Anti-Glare Surface Treatment of Display Glass (디스플레이 유리의 눈부심 방지 표면처리를 위한 샌드 블래스팅 공정의 모형화)

  • Min, Chul Hong;Kim, Tae Seon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.5
    • /
    • pp.303-308
    • /
    • 2018
  • Currently hydrofluoric acid (HF) based glass etch method is widely used for anti-glare (AG) surface treatment since it can effectively alleviate the specular reflection problem with relatively low processing cost. However, due to the environmental regulation and safety problem, it is essential to develop alternative technology to replace this method. For this, in this paper, we propose sand blasting based AG surface treatment method for display glass. To characterize the sand blasting process, surface roughness, haze, surface durability, and flatness are considered as process outputs and central composite design (CCD) method and response surface model (RSM) method are applied to model each process output. Models for surface roughness and haze showed 96.44% and 97.24% of R-squared values, respectively and they can be applied to optimize AG surface treatment process for various haze level requirements of display industries.

NOVEL SURFACE PROFILER SYTSTEM FOR INSPECTION OF FLAT PANEL DISPLAY

  • Kimura, Munehiro;Akahane, Tadashi;Iwata, Tetsuya
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.325-327
    • /
    • 2004
  • Novel surface profiler system for inspection of the display components is demonstrated In the case of the liquid crystal display, for example, not only the flatness of the alignment film but also the quality of rubbing can be inspected. Furthermore, the shape of the component such as the color filter, electrode and mirror can be inspected without removing each component.

  • PDF

Shadow Mask 제조공정의 열변형특성(I)

  • 손순식;서윤철;강충길
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.102-109
    • /
    • 1997
  • The surface deformation of shadow mask was studied by the experiments and numerical analysis for process improvement and delet of the stabilizing process in the shadow mask manufaturing line. To inverigate the thermal deformation of shadow mask with and without stabilizing process mask, data of spring strength, frame flatness, frame magnetic force and a mask surface curvature were measured. The tube characteristics of two kind of shadow masks were also investigated.

  • PDF

The Geometric Error Analysis by Various Various Inputs In Surface Grinding (평면연삭에서 다변수 입력에 의한 형상오차 해석)

  • 김강석;홍순익;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.868-872
    • /
    • 1997
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground surface represents a conacve profile. In the analysis a simple model of the temperature distribution,based on the result of a finite element method, is applied. The analyzed results are compared with experimental results in surface grinding. The main results obtained are as follows; (1) The temperature distibution of a workpiece by FEM is comparatively in good agreement with the experimental results. (2) The bending moment by generated heat cause a convex deformation of the workpiece and it reads to a concave profile of the grinding surface.

  • PDF

Improvement of the Surface Roughness by Changing Chamfered Angle of the Insert in Face Milling (정면밀링가공에서 인서트의 챔퍼각 변화에 의한 표면거칠기 향상)

  • Kwon, Won-Tae;Lee, Seong-Sei
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.155-160
    • /
    • 2001
  • A milling process with 45 degree chamfered inserts produces a perfect flat surface only in theory. It is due to many unwanted factors including thermal effect, dynamic effect, the problem of the controller used and the problem of accuracy of the machine tool. In this study, introduced is a method to improve the surface roughness by redesigning of the chamfer angle of the insert, which traditionally has been 45 degree. First, the relationship between the fixed machine coordinate and the relative coordinate on the insert is derived. This transfer matrix is used to determine the new insert angle to maximize the flatness of the machined surface. A newly designed insert is manufactured, and used to carry out the experiment. It is proved that she insert designed by the proposed method produced a much flatter surface than a traditional one.

  • PDF

A Study on the Prediction of Thermal Deformation Using Temperature Analysis in Surface Grinding Process (연삭가공시 온도해석을 통한 열변형 예측)

  • 김강석;곽재섭;송지복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.19-23
    • /
    • 1995
  • The thermal deformation of a workpiece during grinding is one of the most important factors that affect a flatness of a grinding surface. The heat generated in one-pass surface grinding causes the convex deformation of a workpiece. Therefore, the ground durfae represents a concave profile. In the analysis a simple model of the temperature distribution, based on the results of a finite element method, is applied. Theanalyzed results are compared with experimental results in surface grinding. The main results obtained are as follows: (1) The temperature distribution of a workpiece by FEM has a good agreement with the experimental results. (2) The bending moment by generated heat causes a convex deformation of the workpiece and it leads to a concave profile of the grinding surface.

  • PDF